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Examples of four dimensional cusp singularities

By Hiroyasu TSUCHIHASHI

Abstract. We give some examples of four dimensional cusp singu-
larities which are not of Hilbert modular type. We construct them, using
quadratic cones and subgroups of reflection groups.

0. Introduction

In [8], we showed that an r-dimensional cusp singularity Cusp(C,T") is obtained from
a pair (C,I') of an open cone C in R" and a subgroup I'" of GL(r,Z) satisfying the
following three conditions, where 7 is an integer greater than 1.

1. C is strongly convex, i.e., 7y C C for any x,y € C and C N —C = {0}.

2. C is I'-invariant, i.e., yC = C for all v € T.

3. " acts on D¢ := C'/Rsq properly discontinuously, freely and D¢ /I' is compact.

Cusp(C,T') is obtained by adding a point to the quotient of the tube domain R" +
v/—1C under the action of the semidirect product of Z"™ and I. In the 2-dimensional
case, Cusp(C,T') is nothing but a Hilbert modular cusp singularity. Hilbert modular
cusp singularities exist in all dimensions greater than 1, where C is the interior of a
simplicial cone and D¢ /T is a real torus. It is also known that there exist other higher
dimensional cusp singularities of arithmetic type (see [6] and [7, §3], for instance). We
gave in [8] some 3-dimensional explicit examples of (C,T') such that D¢ /T are not real
tori. In 1991, Ishida[3] gave explicit 4-dimensional examples. Until quite recently no
other 4-dimensional explicit examples seem to be found. On the other hand, Vinberg[10]
gave a way to obtain a subgroup I' of GL(r,R) acting properly discontinuously on a
strongly convex open cone C' in R". Here I' is generated by reflections with respect to
the hyperplanes containing the (r — 1)-dimensional faces of a polyhedral cone satisfying
certain conditions. Moreover, he gave a simple necessary and sufficient condition for the
cone C' to be quadratic, i.e., defined by a quadratic polynomial. In this paper, using the
results in [10], we give some explicit examples of 4-dimensional pairs (C,T") such that T’
are subgroups of reflection groups.

In Section 1, we show that for any open strongly convex cone C' in R", any subgroup
of GL(r,Z) preserving C, acts on D¢ properly discontinuously. In Section 2, we show
that if a quadratic polynomial P defines a cone C' in R" and there exists a subgroup I' of
GL(r, Z) satisfying the above conditions, then all coefficients of P may be assumed to be
integers and P(x) # 0 for any point « in Z"\{0}. In Section 3, we show that if a quadratic
cone C' contains a rational polyhedral cone satisfying certain conditions, then there exists
a reflection group I' contained in GL(r,Z) and acting on C' with compact D¢ /T. In
Section 4, we study the structure of exceptional sets of resolutions of Cusp(C,I") for
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pairs (C,T') such that I' is a subgroup of a reflection group. Finally, we give three 4-
dimensional examples of pairs (C,I') with quadratic C, and one with non-quadratic C
and a resolution of Cusp(C, I") whose exceptional set consists of 4 irreducible components.

1. Groups acting on cones

Let N be a free Z-module of rank r > 1, let M = Hom(N,Z) andlet (, ) : M XN —
Z be the natural pairing. For an open cone C in Ng = N @ R, let D = C'/R~( and let
pc : C — D¢ be the natural projection.

DEFINITION. I'c = {7y € GL(N) | vC = C} for an open cone C' in Ng.

Let C* = {z € Mg | {z,y) > 0fory € C'\ {0}}. If C is an open strongly convex
cone in Ng, then I'c« = {tv | v € ¢}, where 'y is the element in GL(M) satisfying
(*yz,y) = (x,vy) for any elements x and y in M and N, respectively.

THEOREM 1. If C' is an open strongly convex cone in Nr, then I'c acts on D¢
properly discontinuously, i.e., {y € T | vSN S # I} is finite for every compact subset S
of Dc.

Figure 1

PROOF. Let ©* be the convex hull of C* N M and let = be the boundary of {y €
C | (z,y) > 1forz € ©"}. Then the restriction pciz : = — D¢ of pc to Z is a
homeomorphism (see Figure 1). Let 2, = {y € E | (x,y) = 1} for each element = in
C*NM. Then Z, is closed in =. Let L be the set of vertices on ©*. Then L is contained in
M and E = J, ¢ Z;. Forany point yinE, {z € L |y € E,} C{xr € C"NM | (z,y) = 1}
is finite.

Let S be a compact subset of Do. Then Lo ={z € L | SNpc(E,) # S} is finite. If
vSNS # & for an element v in I'c, then there exist elements 1, z2 in Ly with tyz; = xo.
On the other hand, K = {y € CN N | (z1,y) = ¢} contains linearly independent r
elements for a positive integer c. Then {y € I'c | 'yz1 = 21} C {y € ¢ | 7K = K}
is a finite set. Hence {y € I'c | !yx1 = 2} is also finite for any elements 1, z3 in Lo.
Therefore, {y € T'c | ¥SN S # &} is finite. O
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For an open strongly convex cone C' with compact D¢ /T'¢, there exists a normal
subgroup I' of I'¢ with a finite index acting on D¢ freely. For example, we obtain such a
group as the intersection with the kernel of SL(N) — SL(N/nN) for a suitable positive
integer n.

2. Quadratic cones

We fix a coordinate (X1, Xs,...,X,) of N throughout the rest of this paper. For a
homogeneous polynomial P(X7, Xs,...,X,) of r variables, we denote by Cp the open
cone defined by

{(z1,22,...,2,) € Nr | P(x1,22,...,2,) > 0}.

DEFINITION. We call a cone C' in Ngr quadratic, if there exists a homogeneous
quadratic polynomial P(X7, X5 ..., X,) such that C is a connected component of Cp.

If a quadratic cone C defined by a polynomial P is strongly convex, then the signature
of Pis (1,7 —1) and CU(-C) = Cp.

THEOREM 2. Let C be a quadratic strongly convex cone in Ny defined by a polyno-
mial P. If D¢ /T ¢ is compact, then there exists a positive real number ¢ such that all
coefficients of cP are integers and P has no isotropic elements in N, i.e., P(x) # 0 for
all z in N\ {0}.

PrOOF. First, we show that there exists a finite set K contained in C' N N such that the
convex hull of po(I'cK) is equal to De. Let = be the boundary of the convex hull of
C NN and let J=Z=NN. Then the convex hull of pc(J) is equal to De. On the other
hand, J/T'¢ is finite, because D¢ /T'¢ is compact. Hence there exists a finite set K such
that T K = J.

Let z be an element in K. We may assume that P(z) = 1, multiplying P by a
positive number. Then P(vyx) = 1 for any element « in I'c. Hence all coefficients of P
are rational, by the following lemma.

r(r+1)

LEMMA. There exist m = == elements 71, 72, ..., ¥m in I'c and an element x in
K such that f(y12), f(y2x), ..., f(yma) are linearly independent, where f : N — Z™
is the map sending (71,2, ..., 2,) to (¥2,..., 22, 2172, ..., Tr_12,).

PROOF. Suppose that f(y12), f(y2x), ..., f(ymz) are linearly dependent for any element
2 in K and any m elements 1, ¥o, .. ., ¥m in Tc. Then f(T'cx) is contained in an (m—1)-
dimensional linear subspace of R"™. It implies that there exists a homogeneous quadratic
polynomial Q;(x1,x2,...,2,) such that Q,(yx) = 0 for all v in I'c. Since K is finite,
there exists a point zg on dC \ {0} such that Q.(xzg) # 0 for all  in K. Then there
exists a non-zero element yo in Mg such that (yo, o) < 0 and that (yo,yx) > 0 for all =
in K and for all v in I'c, because there exists a hyperplane H with H N dC = Rx>¢xo.
Hence D¢ is not equal to the convex hull of po(I'c K), a contradiction.

Next, suppose that P(yg) = 0 for an element yo in N \ {0}. We may assume that yg
is primitive and that yg € 0C. Let zy be a vertex on the boundary of the convex hull of
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{x € C*N M | (z,yo) = 1}, which is not empty. Then zg € M and yo € O,,, where
O, ={yeC | (xo,y) =1,{(x,y) > 1forz € C*NM}.

Since ©,, is compact, ©,, N N is a finite set. Hence I'y = {y € T'¢c | YO,, = O, } is a
finite group. Therefore, pc(0,,)/To is not compact. However, pc(©,,) is closed in De.
It implies that D¢ /I'¢ is not compact. O

In the 2-dimensional case, the converse of the above theorem holds, because C' =
R>ov1 + R>ovs for two eigenvectors vy and v, in Ng \ Nq of an element in SL(V).

PROPOSITION 3. An open strongly convex cone C in Ngr with compact Do /T¢, is
quaderatic, if and only if there exists a homomorphism f : N — M such that fr(C) = C*
and that f oy =ty~1o f for any element ~ in I'c.

PRrROOF. Assume that C is quadratic, i.e., there exists a regular symmetric matrix A of
index (1,7 — 1) such that C' is a connected component of {x € Ngr | txAz > 0}. We
may assume that all entries of A are integers, by Theorem 2. Let f : N — M be the
homomorphism satisfying (f(y),z) = 'yAz. Since the index of A is (1,7 — 1),

{y € Nr | 'yAz >0 for z € C'\ {0}} = C.
Therefore, fr(C) = C*. Let v be any element in I'c. Then ‘yAy = A. Hence

(fOyy),z) ="(v) Az = "y'yAx = 'yAy e = (fy), v 'z) = (v f(y), 2).

Therefore, f oy ="*y"1o f.

Conversely, assume that there exists a homomorphism f : N — M as in the propo-
sition. We define a symmetric bilinear form on Ng by « -y = (fr(x),y) + (fr(vy), z).
Then there exists a symmetric and integer matrix A with x -y = tx Ay. For any element
vin Te, vz - vy = x -y, because (fr(vx),vy) = (‘v fr(z),vy) = (fr(z),y). Since
fr(C) = C*, -y > 0 for any points « and y in C. Hence = - 2 > 0 for any point =
on OC, because the function Ng > x — z -z € R is continuous. Let © be the convex
hull of C N N. Since 00 /T'¢ is compact, {z -z | z € 9O} has the maximal value d. Let
Se={r € Nr |z -z =d}. Then S;NC C O. Since O is closed and © N IC = I,
SqNoC = . Hence x - x = 0 for any point x on JC. Therefore, C is a connected
component of {x € Ng | z-z > 0}. O

The above proposition can be applied to decide whether the cone C is quadratic
for a pair (C,T") satisfying the conditions 1, 2 and 3 in Introduction. We give an
example. Let r = 3. Let S be the surface and A be its triangulation obtained from

the hexagon in Fugure 2, identifying the edges v1v3, v3u; and Usvg with Uav3, U405
and Tgo7, respectively. Then x(S) = —1 and the double Z-weight on A as in Figure 2
satisfies the monodromy condition and the convexity condition (see [8, Definitions 1.3
and 1.5]). Hence we obtain a map o : {all vertices of A} — N and a homomorphism
p: m(S) = GL(N) such that o(yv) = p(v)o(v) for all vertices v of A and all elements ~
in 71(S) by [8], where A is the pull-back of A under the universal covering @ : S — S.
Let C = R+¢0, where O is the convex hull of the image of o, and let I' = p(m1(S)).
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Then the pair (C,T") satisfies the conditions 1, 2 and 3 in Introduction. There exist
vertices ’51, 172, ceey 176 of A with w(f;l) = V; such that ’(71172’[)37 173’[74’55, 1756661 and ’51@355
are triangles of A. Here we may assume that o(%1) = e, o(f3) = e, and o(75) = es,
where {e;,es,e3} is a basis of N. Let f; = o(09;)(= 2€; + 2€;41 — €;42) for each i in
Z/3Z. Let ¥ ={y7 | ve',7 < u;,1=0,1,2,3}, where uop = R>0e1 + R>pe2 + R>pes
and p; = R>oe; + R>pei11 + R>of; for 4 = 1,2,3. Then X is a non-singular fan with
|2\ {0} = C and T" acts on the set of 1-dimensional cones in ¥ transitively, because A
has only one vertex. Hence we have a resolution of Cusp(C,I") whose exceptional set is

irreducible.

vlefq%el

776 — f3 VAV3 v5/v4
i /-3-2%_2-& 3 ~ \-1 _3
1}6\/'1 - \"Ug — Vo — f1 2 \ / 2

3 -1 2 e 47

\ | &_3;%1%%%__1_"2

_1\/—2 -2 3 Vi \3/ Vi Vi

Vs -2 'Zy V3 < U3 —> €9 / 22 \

$ -3 -1 R .
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es Vg < Vg — fg

Figure 2

PROPOSITION 4. The above cone C' is not quadratic.

PROOF. Let v; be the elements in GL(N) sending e;, f; and e;41 to f;, e;+; and f; +
3e;+1 — e, respectively for all ¢ in Z/3Z. Then ~; are in T'c. We easily see that also
is in I'c the element sending e; to e;41, which we denote by §. Let eg = e; + €2 + €3
and ej = e} + e} + e}, where {e], e}, e}} is the basis of M dual to {e1,e2,e3}. Then
dep = ep and ‘el = ef. Suppose that there exists an injective homomorphism f :
N — M satisfying f o~y = ‘y~!o f for any element v in I'c. Then f(eg) = cey for
a non-zero integer ¢, because any fixed point of ‘=1 is on Rej. We see by an easy
calculation that v;eg = 9e; + 20e;41 — 6e;42 and tv; ‘el = e + 3e;, | +23ej,,. Hence
Y1€0 +72€0 +v3€0 = 23€p and ty; ted + v, el + 15 tel = 35e). Tt imlpies ¢ = 0. Hence
C' is not quadratic, by Proposition 3. (|

3. Reflections

Let P be a quadratic homogeneous polynomial of r variables with the signature
(1,7 — 1), and let C be a connected component of Cp. Then C is strongly convex and
Cp = CU(—C). We assume that all coeflicients of P are integers with no common
divisors greater than 1, throughout this section. Let Bp : N x N — Z be the symmetric
bilinear form with Bp(z,z) = 2P(x).

DEFINITION. -y = Bp(z,y) for elements z,y € Ng.

We easily see that yx - yy = = - y for any element v in I'c. For an element v in Ng



6 H. TSUCHIHASHI

with v-v # 0, we define a linear transformation 7, and a hyperplane H, of Ng as follows:

x-v
Yo T T — 2—, H,={x € Ngr | z-v=0}
v
We see by easy calculation that 42 = id, v,v = —v, y,@ = x for any z in H, and

Yo - Yoy = x -y for any z,y in Ngr. Hence v,C = C or —C. If v-v < 0, then ~,C = C,
because C' N H,, # . Hence we have:

e, v

PROPOSITION 5. If v is an element in N with v-v < 0 and 2 € Z for each

fundamental vector e;, then ~, is in I'c.

Any element v in N with v-v = —2 satisfies the assumption of the above proposition.
Let F, = {z € C | y& = «} for an element 7 in I'c.

PROPOSITION 6. Let v be an element in I'c with F., # & and dim F, =r — 1. Then
there exists an element v in N with v = 7y,.

PROOF. r — 1 of the eigenvlues of v are equal to 1. The other is equal to —1 and
7% = 1, by Theorem 1. Hence there exists a non-zero element v in N with yv = —v.
For any element = in Ng, there exists a real number ¢, with x — yx = c,v, because
y(z — yr) = —(x — vx). On the other hand, vz - v = x - yv, because v? = 1. Hence
(x — yx) - v = 22 - v. Therefore, ¢, = 222 O

v

Here we note that an eigenvector h of -, corresponding to the eignevalue —1 and the
linear function a on Ng with a(h) = 2 and vanishing on H,, in [10], are nothing but v
and the function a(z) = 2v - z/v - v, respectively.

PROPOSITION 7. Let v and w be elements in N with v-v < 0 and w-w < 0. If
== =0, %,% or Y2 then |y,7| = 2,3,4 or 6, respectively, and A = {y €
Nr |v-y >0,w-y >0} is a fundamental domain of the action of {y,,7,) on Nr.

PrROOF. We may assume that v-v = w-w = —1 replacing v and w with v/y/—v-v
and w/v/—w - w, respectively. Assume that v-w = v/3/2. Then 7,7, sends v and w to
2v + /3w and —+v/3v — w, respectively. Hence |7,7.,| = 6. Moreover,

A =R>o(—20 — V3w) + Rxo(—V3v — 2w) + {y € Nr | v-y =w -y = 0}.

We see by easy calculation that r —2 < dim(yANA) <r —1 for any v in (7., vw) \ {1}.

For the other cases, calculation is easier. O
If ﬁ = —%,—% or —g, then |v,vw| = 3,4 or 6, respectively, however,

dim (v, YwywA N A) = 7. Let o be an r-dimensional rational polyhedral cone. For each
(r — 1)-dimensional face T of o, we denote by v(7) the unique primitive element v in N
determined by the condition that v-y = 0 for all points y in 7 and v -y > 0 for all points
yin o.



Ezxzamples of four dimensional cusp singularities 7

THEOREM 8. If there exists an r-dimensional rational polyhedral cone o satisfying
the following three conditions, then pc(o \ {0}) is a fundamental domain of the action
ofI'on Do, ¥ ={yA |y €', <o} is a fan and |X| = C U {0}, where I' = (v,(r) | T <
o,dim7 =n—1).

1. o\ {0} C C.

2. v(7) - v(1) <0 and v,(+) € I'c for any (r — 1)-dimensional face T of 0.

3. 7 )U((T))\/( ) o =0,3%,2 75 or L for any (r — 1)-dimensional faces T and p
v(T)v(T v(p)-v(p
of o with dim(t Np) =7 — 2.

PROOF. We can define distance 7w on S¢c = {v € C' | v-v = 1} ~ D¢ by coshtw = v w
and angle AHCHC of two hyperplanes HUC = H,NSc and Hg = H,NSc on S¢ by
cos /ZHC HE = mm for v,w € Ng with v-v < 0, w-w < 0. Then we may regard
D¢ as a hyperbolic space and (pc)g (0\ {0}) as a Coxeter polyhedron, by the conditions
2, 3 and Proposition 7. Hence we see by [4, Theorem 7.1.3] that the assertions of the
theorem hold. d

4. Structure of exceptional sets

We keep the notations and the assumptions in the previous section. Let o be an
r-dimensional rational polyhedral cone satisfying the conditions of Theorem 8. Let W =
Tyemb(X) be the toric variety associated to the fan ¥ in Theorem 8. For a cone 7 # {0}
in X, we denote by V(1) the closure of orb(r) in W, which is a compact toric variety
(see [5, Corollary 1.7]). Let ord : Ty — Ng be the homomorphlsm induced by —log| | :
C* — R. Let U be the interior of the closure of ord~ L(C) in W and let X=Ww \Tn.
Then U is an open neighborhood of X. Let I'y be a subgroup of I" with a finite index
acting on D¢ freely. Then Iy acts on U freely. Let U = (7/1’0 and let X = )?/Fo. Then
the cusp singularity Cusp(C,T) is obtained by contracting X to a point in U (see [8]).

Let X be a face of o with 1 < s :=dimA < r —2, and let py : N = N/(RANN)
be the natural projection. Let pq, po, ..., 4 be the (r — 1)-dimensional faces of o
with A < p; and let I'x = (yy(u,) | @ = 1,...,1). Then I'y acts on N/(RAN N). Let
Ya={r)g ()| 7€ X,X < 7}. Then X, is a I'y-invariant fan in N/(RANN). Moreover,
V(A) = Tn/mannyemb(Xy), by [5, Corollary 1.7]. Hence V()) is non-singular, if and
only if so is (px)r(0).

Now, assume that (px)g () is non-singular, i.e., (px)g (¢) = R>owi +R>owa +-- -+
R>ow,—_s for a basis {wy,ws, ..., w,_s} of N/(RANN). Then there exist elements w1, ug,

, Up—s In N No with w; = px(u;). Let {ty—sq1,...,u.} be a basis of RANN. Then
{u1,u2,...,u,} is a basis of N. Moreover, 80 is {u1, ..., Ui—1, Vo(u,)Wi> Wit1, - -+ Ur
because 7, (,,) is in GL(N) and 7, (,,yu; = u; if i # j. Hence there exist integers c; ;
(1<i<r—s,1<j<r)with

Ui + Vo(u)Wi + Ciau1 + -+ Ci—1Ui—1 + Ciip1tipr + -+ G pur = 0.
Therefore,

Wi + Yo(u)Wi + C 1wy + -+ + Ci—1Wi—1 + Ciir1Wit1 + -+ Cp_swr—s = 0.
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These numbers ¢; ; determine the structure of V/(\). Especially, when s = r — 3, they
are nothing but double Z-weights in [5, 1.7]. We easily see that ¢; ; < 0. Moreover,
|%(u1:)%(uj)‘ = +o0,if¢;; £ —2and ¢;; < -2, ¢ = —land¢j; < —4dorc; =0

and ¢;; # 0. Hence if v(;) - v(p;)/ (\/—v(,ui) ~o(pg)/—o(py) - v(uj)) =0,3, % or @,
then {c¢; j,¢;:} = {0}, {—1}, {—1, -2} or {—1, =3}, respectively, by Proposition 7.

We explain some examples of V(A) for the convenience of the next section. First,
we consider the case s = r — 2 and (py)g (0) is non-singular. If ¢; 2 = cp,1 = 0, then
VA) P! x Pl If c10 =co1 = —1, then V(\) =~ Sg. If ¢ 2 = —1 and ca1 = —2 (resp.
—3), then V(\) ~ Ss (resp. Si2). Here S; are toric surfaces obtained from Coxeter
groups as follows (see [2, 5.1] for the definition of Coxeter group). For each i = 6,8,12,
let G; be a subgroup of GL(2,Z) generated by two elements g1 and go; defined by

_(-10 (1 1 (1 2 (1 3
g1 = 11) 926= 1) 8= \g_1) 212={g_1)"

Then G; are Coxeter groups with |G;| = i. Let A; = {faces of gR%, | g € G;}. Then

A; is a non-singular fan for each i. Let S; = Tzzemb(A;) be the compact toric surface
associated to the fan A;. Then the complement of the algebraic torus in Sg, is a cycle of

6 rational curves with the self-intersection numbers all equal to —1. The complement of
the algebraic torus in Sg (resp. Si2), is a cycle of 8 (resp. 12) rational curves with the
self-intersection numbers repeating —1, —2 (resp. —1, —3).

Next, we consider the case s = r — 3 and assume that (py)g (o) is non-singular
except the case (7). We denote by V; the toric variety V() in (i), which appears in the
following sections as an irreducible component of the exceptional set of a resolution of
4-dimensional cusp singularities.

Figure 3 Figure 4 Figure 5

(la)Ifc1 2 =c21 =0, c1,3 =c31 = c32 = —1, a3 = —2, then the complement of the
algebraic torus in V3, consists of 26 toric surfaces 6, 8 and 12 of which are biholomorphic
to Sg, S and P! x P, respectively (see Figure 3). The self-intersection numbers (E|V)2
in irreducible components V' =~ Sg of rational curves E =V - W, are equal to —2 and —1,
if W ~ P! x P! and S, respectively.

(Ib)Ifc12 =c21=0,c¢13 =c31 = c23 = —1, c32 = —2, then the complement of the
algebraic torus in Vyy, consists of 26 toric surfaces 6, 8 and 12 of which are biholomorphic
to Ss, Sg and P! x P!, respectively (see Figure 4). The self-intersection numbers (E)y/)?
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in irreducible components V' ~ Sg of rational curves £ =V - W, are equal to —1 and —2,
if W ~ P! x P! and S, respectively.

(2) Ifcio =c21 =0, c13 =c31 =32 = c2.3 = —1, then the complement of the
algebraic torus in Vs, consists of 14 toric surfaces 8 and 6 of which are biholomorphic to
Ss and P! x P! respectively (see Figure 5).

( )If012262120132031:0 62320372:—1 thean;f:Pl XSG.

(4) If012—021 —013—031—0 623:—17 63,22—2thenV4:P1 XSg.

(5) If612—621—013—631—0 623:—1 632:—3thenV52P1 ><512.

(6) Ifc”—Oforallzj,thenV(;NP1 x P! x PL.

7) If (pr)g (o) is simplical, v(p;) - v(p;) = 0 for 1 < ¢ < j < 3 and u; = fy,
= f1+2f>, ug = f3 for a basis {fi, f2,..., £} of N, then V7 ~ P! x (P! x P!/(—1,-1)).

5. Examples with quadratic C

We fix r = 4, throughout the rest of this paper.

Example 1. Let P(z1,22,73,74) = —23 — 23 — 23 + 7T23. Let o be the cone generated
by the following six elements in N.

0 7 7 14 21 7
0 7 7 7 7 0
Uy = 0l U2 = ol us = Al Uy = 0 , Us = 7 , U = 0
1 4 5 6 9 3

Let C be the connected component of Cp containing u1. Then o \ {0} C C. Let

-1 0 0 3 2
v = L vy = -1 vy = 0 vy = 0 ) 2
1= 0 , U2 — 1 s U3 — 11 4 — 0 sy U5 — 1
0 0 1 1
us \L To us
cNH
U1,3
1 T5 T4
Uq Ue
U1,6
U1,2
Uz T3 s
Figure 6
Then 7, := o N H,, (i = 1,...,5) are 3-dimensional faces of o (see Figure 6 which

shows the intersection with a hyperplane H). Moreover, we see by Proposition 5 and
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easy calculation that v(7;) = v; satisfy the conditions 2, 3 of Theorem 8. Let 3 be the
fan in Theorem 8 defined for this o. Then V(A) are singularities in Tyemb(X) for all
cones A in 3 with dim XA > 2. Noting that ¢V is spanned by i(vy), i(v2), ..., i(vs),
where ¢ : N — M is the homomorphism satisfying (i(x),y) = Bp(x,y), we see that all

3-dimensional faces of 0¥ are non-singular. Let A = R>ou; and let

1 1 1
1 1 0
U2 = ol U3 = 1l U6 = 0
1 1 1

Then {uy,u;,2,u1,3,u1,6} is a basis of N and (pa)r(0) = R>opa(ui2) + R>opa(uis) +
R>opa(u1,6). Moreover, we see by easy calculation that the relations uj 2 + Yy, u12 —
uyg —uie = 0, U3 + YoyU1,3 — 2ui 2 = 0 and uy 6 + Yo, u1,6 — U1 — ur,2 = 0 hold.
Hence V() is biholomorphic to Vi, in the previous section. Since vy - v3 = vy - v5 = 0,
v3-vs =1, v3-v3 = —1 and vs - v5 = —2, V(R>ouz) is biholomorphic to V;. We see by
similar caculation that V (R>ou;) are biholomorphic to Va, Vi, Vo and Vy for i = 3,4,5
and 6, respectively.

Example 2. Let P(z1, %2, 73,74) = —23 — 25 — 23 4+ 1523. Then the cone o defined
by v1, va, ..., vg, satisfies the conditions of Theorem 8, where
-1 0 0 5 3 3
1 -1 0 0 3 2
v = 0 , U2 = 1 , U3 = 1 , Vg = 0 , U5 = 0 , Vg = 9
0 0 1 1 1

(see Figure 7). We can verify that the divisors corresponding to the vertices attached @
are biholomorphic to V; in the previous section. For example, vy vy = v9-vg = vg-v5 = 0,
(Rws + Rw;) N M = Zwsy + Zw; for i = 4,6 and [(Rwy + Rwg) N M : Zw, + Zwg] = 2,

where w; (i = 2,4,6) are the elements in M satisfying (wq,z) = Bp(ve,z),
(wg,x) = +Bp(vs,z) and (wg,x) = Bp(ves,z). Hence V(72 N 74 N 76) is biholo-
morphic to Vz, where 7, = o N H,,.
Ny
@ - @ \LTI @
T7
Ts5 4 73 < T4
@
T6
© T © © T @ ©
Figure 7 Figure 8

Example 3. Let P(z1, %9, 73,24) = —323 — 323 — 523 + 23. Then the cone o defined
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by v1, va, ..., vg, where
1 -1 0 0
-1 0 1 0
vy = vy = vy = vy =
1 0 ) 2 0 ) 3 0l 4 1>
0 0 1 0
0 0 1
vy = 0 v o v L
5 — 1 I 6 — 6 9 7= 1
2 15 3

(see Figure 8).

6. An example with non-quadratic C

We fix a basis {e1, e, e3,e4} of N. Let ; be the elements in GL(NN) defined by the
following relations for ¢ = 1,2,3,4. v,e; = e; if i # j and

71€1 = —e1 + ez +2e3, 1262 = €] — €3 + €y, Y3€3 = €1 —e3 + ey, Y4e4 = 2€x + e3 — ey.

Then I'g = (v; | i = 1,2,3,4) is a Coxeter group with the relations: 72 = 1 and

() (172)° = (1370)° = (113)" = (1270)" = (170)” = (9273)° = 1.

Hence the Dynkin diagram of I'g is Figure 9 (see [2, 2.3] for the definition of Dynkin
diagram). Let 0 = R>pe1 + R>pez + R>pes + R>pes and let 7; be the 3-dimensional
face of o which does not contain e; for each i. Then ~; is a reflection with respect to
the hyperplane containing 7;. Moreover, the entries a;; of the Cartan matrix in [10], are
equal to —c;j; if i # j, where ¢;; are the coefficients in the above relations vje; = > ¢j;ey,
because 2e; — 7, cjie; is an eigenvector of v; with the eigenvalue —1. Hence a4 =
a4q1 = Q23 = A32 = O, a12 - G21 = A34 * A43 = 1, 13 - a31 = A24 * A42 = 2. Therefore, 06 =
U, er, 70\ {0} is an open strongly convex cone in Ng and ¥ = {y7 [y € I's,7 <o} isa
Dg-invariant fan with |Xg| = CsU{0}, by [10, Theorem 1]. Moreover, Cs is not quadratic,
by [10, Theorem 6]. Since o is non-singular, so is Tiyemb(Xg). The 3-dimensional toric
variety V(R>¢e;) is biholomorphic to Vi, (resp. Vip) in Section 4 for ¢ = 2,3 (resp.
1,4). The intersection V(R>pe;) N V(R>e;) = V(R>pe; + Rx>oe;) is the toric surface
corresponding to the Coxeter group generated by {~i, v} for {k,1} ={1,2,3,4}\ {4,5}.
Hence it is biholomorphic to P! x P! if (i,5) = (2,3), (1,4), Se if (i,5) = (3,4),(1,2)
and Sg if (4,7) = (2,4), (1,3) by (x). Note that V(R>0e;) N V(R>pe;) is biholomorphic
to P! x P, if and only if V(Rxpe;) and V(Rxoe;) are biholomorphic.

REMARK. Let I'y, 3§ and Cj be the subgroup of GL(N), the fan and the cone in
Nr, respectively, obtained by transposing the coefficients cg 4 = 1 and c42 = 2 in the
above relations v;e; = > ¢;je;. Then the irreducible components of Tyemb(X§) \ T
are isomorphic to those of Tiyemb(3g) \ Ty. However, they intersect to each other in
a different way. V(R>oe;) are biholomorphic to Vi, (resp. Vip) for ¢ = 1,2 (resp.
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3,4). Hence V(R>pe;) N V(Rx>oe;) is biholomorphic to Sg, if and only if V(R>pe;) and
V(R>oe;) are biholomorphic. However, the following consideration for (Cg,I's) holds
also for (C§,I'G), because the relations in (%) do not change.

Hereafter, we simply write I', ¥ and C for I'g, 3¢ and Cg, respectively.

1 3 1 3 le o3
2 4 2 4 2 4
Figure 9 Figure 10 Figure 11

THEOREM 9. There exists a subgroup I'’ of T' of index 48 which acts on D¢ freely.
Conversely, if a subgroup I'" of T acts on D¢ freely, then I" is of index at least 48.

Let I'' = (y; | 1 < j < 4,5 # i) for each i. Then I'" is the stabilizer of Rxoe;
and |I'"| = 48. Hence the second assertion in the above theorem holds. Let A =
{pc(t\{0}) | 7 € &,7 # {0}}. Then A is a I'-invariant tetrahedral decomposition
of Dg. If we get IO in the above theorem, then A/T? is a tetrahedral decomposition
of the 3-dimensional compact topological manifold D¢ /T'Y consisting of 48 tetrahedra.
Since A/TY has 48 - 4/|I'¢| = 4 vertices, there exists a resolution of the cusp singularity
Cusp(C, ) with an exceptional set consisting of 4 irreducible components. The rest of
this section is devoted to the proof of the first assertion in the above theorem.

Let 7} be the elements in GL(N) defined by the following relations for ¢ = 1,2, 3, 4.
vie; =e; if i # j and

/ / / /
Y1€1 = —€1 + €2, Ve = €1 — €3, Y363 = —€3 + €4, Y €4 = €3 — €4.

Then IV = (v} | i = 1,2,3,4) is a Coxeter group with the relations: /> =1 and

Hence the Dynkin diagram of IV is Figure 10, IV =~ D3 x D3 and there
exists a surjective homomorphism ¢ : I' — TI' sending v to ~l. Let
A = {p(7\{0}) | v € I',7 < o,7 # {0}}, where p : Nr \ {0} — S® is the
natural projection. Then A’ is a tetrahedral decomposition of S% with 36 tetrahedra.
Let f : CU{0} — Ngr be the piecewise linear map defined by f(z) = ¢(v)y 'z, if
x is in yo for an element v in I'. Then f induces a Galois covering f : Do — S3
with f(yz) = q(v)f(x) for any element v in I', ramifying only along Zi5 U Zaq,
where Z;; = U, cr p(7' (R>0ei + Rxoe;) \ {0}), because (v;,7;) are the stabilizers of
Rxoer + Rxoey, where {k,1} = {1,2,3,4}\ {i, 7}, ¢((1274)?) = ¢((1173)?) = 1 and the
restriction of ¢ to (7;,7;) is an isomorphism if (¢,5) # (1,3),(2,4). Moreover, A is the
pull-back of A’ under f.

De—I g3 A—L r—4 .y
N AR N
53 Aq I">1Iy

Let IV = (v/ | i = 1,2,3,4), where v/ = ~, 74 = v2, ¥4 = ¥4, 74 = 4. Then
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I is a Coxeter group whose Dynkin diagram is Figure 11 and there exist surjective
homomorphisms ¢; : I' — I sending 7; to v/ and ¢} : I — I" sending v/’ to v} with
q = ¢} 0 q1. We can define Galois coverings f1 : Do — S® and f] : S* — S3 such that
f1(+"x) = q1 (") f{(z) for any element v in I and that f] o fi = f, in a similar way
as f. Then f{ ramifies only along =3, Gal(f]) = ker(¢}) and Ay = {p(y"7\ {0}) | v" €
I, 7 < o,7 # {0}} is the pull-back of A" under f]. Let v = {7454 .

LEMMA. There exists a normal subgroup I'y of ker(q]) acting on S% freely with
ker(q})/T1 = Zo @ Zo, 7® € Ty and 4{T17 ' =T.

PROOF. Let P be the convex hull of the 24 points

£2 0 0 0 +1
0 £2 0 0 +1
0|’ 0|’ +2 |’ 0]’ +1
0 0 0 +2 +1

in R*. Then the boudary 0P of IP consists of 24 octahedra which are on the hyperplanes
defined by +z; £ z; = 2 (1 < i < j < 4), and is a regular polyhedron of type
(3,4,3) (see [1, 8.2]). For example, an octahedron has 6 vertices £(2,0,0,0), ¥(0,2,0,0),
Y(1,1,£1,+1). Let O be the barycentric subdivision of the octahedral decomposition
p(OP) of S3 which is the image of P under the projection p : R*\ {0} — S3. Let
h : S — $3 be the homeomorphism induced by the linear transformation h sending
e, ez, ez and ey to £(1,1,0,0), ¥(2,1,1,0), ¥(1,1,1,1) and *(2,2,2,0), respectively.
Then hA; coincides with [, because h(7/e1) = (1,0,1,0), h(vJes) = %(1,2,1,0),
h(vYes) =*(1,1,1,—1) and h(y{es) = *(3,1,1,1) (see Figure 12).

“1,1,-1,1) t(1,-1,1,1)

(17 2’ 1’ 0)
t(1,1,1,-1) t(1,1,1,-1)

Figure 12
Moreover, h(f;~'(Z13)) is the union of the diagonals of the octahedra on p(dP). Since
the barycentric subdivision of an octahedron has 48 tetrahedra, |I| = 24 - 48 = 1152.
Since ker(q) is generated by the conjugates of (v4~y )%, whose fixed points are contained
in f{7Y(Z13) and |ker(¢})| = [I”|/|T’| = 1152/36 = 32, hker(¢,)h~" consists of the

following 32 matrices, where €¢; = £1 and €1€eze3¢4 = 1.

e0000 0er 00 00e O 000e
0e 00 e2000 000e 00e O
00e 0 |’ 000e |’ e3000 |’ 0es 00
00 0ey 00e O 0es 00 e2000
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Note that the fixed points of all matrices of order 2 in the above except —I4, are contained
in the diagonals of the octahedra and that any one of order 4 in the above is the product
of two of order 2. The set consisting of +1,, £ A, £B and +C' is a normal subgroup of
hker(q,)h " acting on S3 freely, where

0100 0010 00 01
~10 0 0 00 0-—1 0010
A= B = _
0001]’ 1000 |" € 0 —-10 0
00-10 0100 -10 00
Let J = hnygh~'. Then

11 -11

1{1-11 1

T=3111 11

1-1-1-1

Hence J3> = —B, JAJ ' =—-A, JBJ ' =B anfi JC’J‘i = —C. Since |ker(q}))/T1| =4
and X? = —1I, for any element X of order 4 in hker(¢})h™1, ker(q})/T1 =~ Zo ® Zy. O

Let 77 = S3/T; and let ¢} : Ty — S® be the Galois covering induced by f;. Then g}
ramifies only along Z13. Let hy : De — T3 be the composite of f; and the quotient map
53 — Ty under I';. Then h; ramifies only along ¢}~ *(Z24) and f = g} o hy. Moreover, ~{/
induces an automorphism §; on T3 with |6;| = 3, by the above lemma. Let v} = 757474
Then 7 has no fixed points on S? and ¢} (1) = 7. Hence g} 061 = 7, 0 g}. In a similar
way, we obtain Galois coverings g : To — S3 ramifying only along Za4, ho : Do — Tb
ramifying only along g5 '(Z13) with f = g} o hy and an automorphism d, on T with
|02] = 3 such that g5 o d = 7, o gh.

DcﬁT:Tl X g3 Ty %TOZT/GO %T0/<(So> :DC/FO%S?’

Now, to show the existence of a subgroup I'’ in the theoerm, we construct covering
maps as above, where the left three arrows do not ramify and the right one ramifies
along =13 U Egy. Let T = T} Xg3 T» be the fiber product of g and ¢g5. Then T is a
topological manifold, because E15 N Zqy = J. Since Gal(g)) ~ Z3 @ Z2, any bijection
between Gal(g]) \ {1} and Gal(g}) \ {1} induces an isomorphism. Hence there exists an
isomorphism ¢ : Gal(g}) ~ Gal(g}) such that (6,767 ") = d2¢(7)d5 " for any element v in
Gal(gy). Let Go = {(7,¢(7)) | v € Gal(g})}. Then Gy has no fixed points on T, because
13N Egy = &. Let Ty = T/Gp and let g, : Top — S* be the covering induced by the
natural projection 7' — S3. Then deg g}, = 4, because deg g/ = 4. Hence the pull-back of
A’ under g, consists of 36-4 = 144 tetrahedra. Let h : Do — Ty be the composite of the
map (h1, he) and the quotient map T'— Ty. Then h is a surjective unramified covering,
because it does not ramify along 96_1(513 UEsg4) and Tp is a topological manifold. Since
(81,62)Go(81,02)~1 = Gy, (61,92) induces an automorphism &y on Ty with gjody = v} og}-
Since 7} has no fixed points on S®, so does &y on Ty. Hence the composite of h and the
quotient map Ty — T/ (o), is the quotient map under a subgroup of I with the index
144/3 = 48 acting on D¢ freely.
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