Fans consisting of infinitely many non-singular cones
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Abstract

We give a method of constructing fans as the title and groups acting properly discontinuously on
certain open sets of the associated toric varieties. As the quotient spaces, we obtain examples of cusp
singularities of dimension greater than 2, non-isolated singularities, degenerating families of compact
complex manifolds of Kodaira dimension 0 and compact complex manifolds of any dimension greater
than 3 with infinite cyclic fundamental groups.

2000 Mathematics Subject Classification. Primary 14J17; Secondary 32505

key words: fan, toric variety, cusp singularity

0 Introduction

Let r be an integer greater than 2 and let N = Z". Degenerating families of Abelian varieties of a
restricted type and cusp singularities are constructed from fans ¥ in N and subgroups I' of GL(N)
satisfying the following condition (see for instance [3], [4] and [5]).

(F) X is I'-invariant, i.e., yo is in ¥ for any o in ¥ and any « in I, and /I is finite.

In [5], we constructed 3-dimensional fans and groups as above using triangulations of compact topological
surfaces to both sides of whose edges integers are attached. In this paper, using simplicial decompositions
of topological spaces which may not be topological manifolds, we give a method of constructing fans in N
and subgroups of GL(N) which satisfy the above condition (F) and give examples of singularities, degen-
erating families of compact complex manifolds of Kodaira dimension 0 and compact complex manifolds
with infinite cyclic fundamental groups.

Let A be a topological space obtained by gluing finitely many (r — 1)-dimensional simplices together
(we give an exact definition in Section 1). Here A may have boundaries and its interior may not be a
topological manifold. Assume that integers are attached to all vertices of (r — 2)-dimensional simplices
which are not on the boundaries of A. In Section 2, we construct a Galois covering f : A — A whose
restriction to f~1(T) is a universal covering, where T is the complement of the union of (r—2)-dimensional
simplices on the boundary of A, some (r — 3)-dimensional simplices and all low-dimensional simplices,
and define a map h from the set A° of vertices of A to N \ {0} as follows. Choose an (r — 1)-dimensional
simplex o = D705 -0, of A and a basis {e1,e9,...,e,} of N, and let h(v;) = e; for 1 < i < r.
Let o/ = wivz -0, be the (r — 1)-dimensional symplex adjacent to « at the (r — 2)-dimensional face
B =73 0,, and let wy be the vertex of o/ which is not on 8. Then we define h(w;) by the equality

h(v1) + h(wy) + > a;h(v;) =0,
=2

where a; are the integers attached to the vertices f(v;) of the (r — 2)-dimensional simplex f(5) of A. If
the integers attached to A satisfy certain conditions ((M), (C) in Section 1), then repeating the above
process, we have a map h: A° — N\ {0}. Then

E(A) :={R>oh(v1) + -+ + R>oh(v;) | 717 - are simplices of ﬁ} U{{O}}



is a set of non-singular cones. In Theorem 12, we give a sufficient condition that 3(A) becomes a fan.

Assume that X(A) is a fan and let Y be the associated toric variety. Then the irreducible components
of the complement of the algebraic torus in Y and their intersections are also toric varieties. In Section
3, we study the structure of them. There exists a homomorphism p : Gal(A/A) — GL(N) with h(yv) =
p(v)h(v) for all vertices v of A and all elements v in Gal(A/A), and its image I' := Im(p) acts on Y.
In Section 4, we show that there exists an open set U of Y on which I' acts properly discontinuously.
Let U = U/T. In Section 5, we give a sufficient condition that U has a fibration. As an application, we
can obtain a degenerating family of elliptic curves with a base space of any dimension. In Section 6, we
consider the case that an anyalytic subset of U contracts to singularities. Theorem 23 gives a sufficient
condition that a compact analytic subset of U contracts to a point. As an application, we can obtain a
singularity with a resolution whose exceptional set consists of rational curves intersecting as the edges of
a polyhedron. Theorem 24 gives a sufficient condition that there exists a holomorphic map from an open
set of U to an analytic space which may have non-isolated singularities. As an application, we obtain a
non-isolated singularity with a resolution whose exceptional set consists of non-compact elliptic surfaces
intersecting along singular fibers of type I5. In Section 7, we show that for any negative integer e there
exist 3-dimensional cusp singularities with resolutions whose exceptional sets are irreducible and their
dual graphs are triangulations of compact topological surfaces with the Euler number e. In Section 8,
we construct an example of A of any dimension greater than 3 which gives a compact complex manifold
with an infinite cyclic fundamental group. In Section 9, we consider deformations of actions of I' by torus
actions. If a map t :T" — T satisfies a certain condition, then I'(t) := {t(y) oy | v € T'} is a group
isomorphic to I' and acts on Y. We study the structure of the quotient space of an open set of Y under
I'(t), in some cases.

1 Simplicial systems and Z-weights

Let N be as in Introduction and let M = Hom(N,Z) with a canonical pairing (, ) : M x N — Z. Let
A"~ be a non-empty set of (r — 1)-dimensional simplices and let A = U:;Ol A® where A® is the set of
i-dimensional faces of simplices in A”~!. Let B be a non-empty subset of A"~2 x A"~2 satisfying the
following conditions (i)-(iv).

(i) B does not contain (3, 8) for any 3 in A" 2.

(11) If (51,ﬂ2) € B, then (527ﬁ1) € B.

(iii) {8 € A"2 | (3,8') € B}| < 1 for any 8 in A"2.

(iv) For any two elements « and o/ in A”~!, there exist elements 3], B2, 85, ..., B}._1, Bk in A™~2 such
that (B;,8i41) € Bfor 1 <i <k, G(B]) = a, G(8;) = G(B}) for 2 < i < k, G(Br) = o, where G(B) is
the element in A”~! of which 3 is a face.

We assume that for each (81,532) in B there exists a bijection I, g,) : B1 — P2 expressed as
ly,p)(t1v1 + -+ + trqvp1) = tywg, + -+ + tr_qwk,_,, where fy = U1 0,1, o = Wi Wr_1
and (k1, ko, ..., k.—1) is a permutation of (1,2,...,7 —1). Moreover, we assume that {l }pcp satisfies the
following:

(V) Ui 80) = L 5y for any (B1, ) in B.

Let A be the topological space obtained by gluing 31 and [, together using l(g, g,) for all (81, 2) in
B, ie., A = Uycar—1a/ ~, where p ~ q if there exist elements 31, B2, 85, ..., Br in A"~2 such that
(ﬁ£7ﬁi+l> € B for 1 < i < k, that (l(ﬁﬁ,&H) 0---0 l(ﬁiﬁﬁQ))Qj) S 6£+1 for 1 < i < k—1 and that
(g, © -0 l(p; p,))(P) = g Then A is connected, by the condition (iv). Let I : Uaeacr — A be the
quotient map.

DEFINITION. We call a triple (4, B, {ls }sep) satisfying (i)-(v), a simplicial system and the above A,
the topological space induced from (A, B, {ly}sep). We call the image () of an element 3 in A* under
I, an i-dimensional slice.



Let A’ be the set of i-dimensional slices. Let Ai’;Q = pry(B) be the image of B under the projection
pry: A2 x A™2 5 A" 2 and let AT7? = {I(B) | B € A[7?}. Then I(Upear-10a7—2 @°) is a topological
manifold by the condition (iii), where a® is the interior of a. Let Aj;* = A™"2\ Al7% and let A];* =
{I(B) | B € Aj7?}. For aslice 8 in A and an integer i with dim 3 < i < r — 1, let n(8,i) = |{(B,a) €
AdmB s AT | B < o, I(B) = B} and let AYB) = {I(a) | B < a € A',I(B) = B}, where the notation
B < o implies that 3 is a face of a. Let Al ? = {3 € A™3 | A""2(8) Cc A2, n(B,r — 1) < 0o} and
let A77% = A" 3\ AI73. Let AY(B) = {a € A" | B < a} for B € A, dimB < i <r— 1. Obviously,

A™Y(B) = {G(B)} and the following holds.

Lemma 1. For each slice 7 in A, there exist elements 71,...,7s (s = n(7,r — 1)) in A™™3
Bi, By Bsy By in A™™2 satisfying the following: I7'(F) = i UTaU---UTs, 7 # 75 if i # j, A7 %(1;) =
{Bi, B}, (8L, Biy1) € B for 1 < i < s, where 541 = P1, and l(ﬁ;ﬁiﬂ)(n) = 7,11 for 1 < i < s, where
Ts4+1 = T1-

DEFINITION. A Z-weight of a simplicial system (A, B,{ly}scp) is a map ¢ : W — Z from W =
{(B,v) € AT7% x A° | v € B} to Z satisfying the following:
(vi) ¢(B1,v) = ¢(B2,1(s,,8,)(v)) for each (B1,2) € B and (B1,v) € W.

The following is one of conditions that we can construct a fan from a simplicial system with a Z-weight.

(M) For a slice T in Airn_?’, let 7;, B;, . be as in Lemma 1, let v; be the vertex of 5; not contained in 7;
and let a; = ¢(B;, v;) for 1 < i < s. Then we obtain (M-i) or (M-ii) by repeating the following operation
(*) on the sequence [[a1, ag, ..., as]] of the above integers.

(*) Remove an integer a; equal to —1 and add 1 to the integers a;1+1 on both sides of a;, where ag = as
and ags41 = ay.

(M-i) [[1,1,1]] or [[a,0, —a,0]] for an integer a. Moreover, the following conditions (a) and (b) hold.

(a) ligr,1))ms © 1(5;71’55)‘7571 0---0 l(ﬁ{ﬁZ)\Tl = id. Hence we may assume that 1(5;)5i+1)(wi7k) = Wit1,k
for1<i<sand1<k<r—2 where 7, =W;1...W;,—2 and Bep1 = B, Wet1,6 = Wik

(b) M1Ms--- Mg = I,., where

0 —o(Bi,win)

6 *¢(5i,.wi,r—2)
(M-it) [[a}, @b, ..., af]) (I > 1, df < ~2).

Example 1. r = 4, A% = {a}, B = {(a1, a2), (a2, 1), (a3, a4), (a4, a3)}, where a = t103030; and o
are the 2-dimensional faces of a which do not contain v;. Let [(4,,a,) be the linear map sending vy, vz, v3 to
v1, V2, V4, Tespectively and let (4, o,) be the linear map sending v1, v3, v4 to v2, v4, v3, respectively. Then
(A, B, {lp}vep) is a simplicial system. Let ¢(aq,v2) = —p(aq,v1) = a € Z, P(az,v3) = ¢(az,v4) = 0,
d(ay,v3) = ¢(az,v1) = —2 and we define ¢(aq, *), ¢(asg,*) so that (vi) holds (see the left of Figure 1).
Then the four edges U103, U101, U203, U304 are mapped under I to one slice of A around which ¢ satisfies
the condition (M-i) (see the right of Figure 1).
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While around I(v703) and I(U3vz), ¢ satisfies the condition (M-ii).



Figure 1 v U1

If the condition (M-i) except (b) is satisfied and ¢ is periodic around an (r — 3)-dimensional slice of
A, then the following proposition assure that also the condition (b) is satisfied.

Proposition 2. Assume that the condition (M-i) except (b) is satisfied and that there exists a positive
divisor | of s smaller than s such that M; = M;, if i = j(mod [). Then M My --- My = I,.

Proof. AjAs---As =1y and Ay --- A; # I for 1 <i < s, because

| e | il B Ity | g

Hence A := A;--- A; # I and A/ = T,.

for an (r — 2) x 2 matrix B. Hence

Iy 0]

MiMy - My = (My - My)*" = { B(A/"' 4 4 A4 ) I,

Since |A| = 1 and A*/! = I, A does not have eigenvalues equal to 1, i.e., |[A — I5| # 0. Hence the lower
left in the right of the above equation is equal to the zero matrix. 0

Proposition 3. If a Z-weight ¢ satisfies (M-i) around a slice T in Aﬁf?’, then the following holds.
Let B;, v; be as in Lemma 1 and let w;y, be as in (M-i) (a). Then there exist elements eq, ..., e
(s=n(T,r—1)), f1, ..., f._o in N such that {e;,e;11,f1,...,f._2} is a basis of N and that

r—2

ei—1+ (B, vi)ei +eiq1 + Z OB, wi )t =0 (1)

k=1
holds for 1 < i <'s, where eg = e, €541 = e;. Moreover,
{faces of Rzoei + Rzoei+1 + RZOfl + -4 RzofT,Q | 1< < S} (2)

is a fan in N.

Proof. Let {ej,eq,f1,...,f._o} be a basis of N. Let e3, €4, ..., €5 be the elements in N deter-
mined by (1) for 2 < ¢ < s — 1. Then (1) holds also for ¢ = s,1, because (e;-1,€;,f1,...,f_2)M; =
(ei,eit1,11,...,f_2). Let a; = ¢(B;,v;) and let L be the submodule of N spanned by f, ..., f._2. Then



e,_1ta;e;+e;11 € L.Ifa; = —1, then ei,2+(ai,1+1)ei,1+ei+1 € L and ei,1+(ai+1+1)ei+1+ei+2 e L.
Hence if [[a1, a2, ...,as]] becomes [[1,1,1]] by repeating the operation (*), then e;, + e;, + e;;, € L
for certain integers 1 < iy < io < i3 < s. While, if [[a1,as2,...,as]] becomes [[b,0,—b,0]], then
e, +e, € L and e;, + be;, + e;, € L for certain integers 1 < i; < iz < i3 < 44 < 5. In both
cases, {faces of R>oq(e;;) + R>oq(e;,,,) | 1 < j < 3or4}isafan in N/L, where ¢ : N — N/L is the
canonical projection. Hence so is {faces of R>oq(e;) + R>oq(ei+1) | 1 < i < s}. Therefore, (2) is a fan
in N. O

Proposition 4. If a Z-weight ¢ satisfies (M-ii) around a slice T in Afn_3, then the following holds.
There exist elements e; in Z2 for all i in Z such that {e;,e;+1} Is a basis of 7?2 and that

e;,_1 +a;e; + €i+1 = 0 (3)

hold for all i in Z, where a; = ¢(Bg,vr), if i = k(mod s), 1 < k < s. Moreover, there exists an element e*
in Hom(Z?,Z) such that (e*,e;) > 0 for all i in Z. This element e* is unique except constant multiples,
if and only ifa] = --- = a] = —2.

Proof. The first half is obvious. If [[a1, as, ..., as]] becomes [[a], a5, ..., a;]] by repeating the operation
(*), then there exists a sequence of integers {i;}(j € Z) such that i; < i;41, that i; = ig(mod s) if
J = k(mod I) and that e;, , +aje;;, +e;,,, =0, where j = k(mod 1), 1 <k <. Let e* be the element
in Hom(Z?,Z) defined by (e*,e;,) = (e*,e;,) = 1. Then

<e*7ei3> = _a/2<6*’ei2> - <e*aei1> 2 2<e*’ei2> - <e*7ei2> = <e*aei2>'

In a similar manner, we obtain (e*, e;,) < (e*,e;,) <---, (€*,e;,) < (e*,e;)) <---. Ifa) =--- =q] = -2,
then the equalities hold in the above inequalities. Hence any element f* in Hom(Z?, Z) with (f*,e;, ) > 0,
is a constant multiple of e*. On the other hand, if aj, < —2 for an integer j, then (e*,e;;,,) > 1. The

element f* in Hom(Z?, Z) defined by (f*,e;,) = (f*,e;,,,) = 1 is not a constant multiple of e*. O

Obviously, the following holds.

Lemma 5. For each slice 7 in A]7® with s := n(7,r — 1) < oo, there exist elements T1,...,7s in
AT73) By, BL in ALL2, B, Bay By, - -+ By, Bs in Al ? satisfying the following: 171 (F) = iU U--- U7y,
£ 7 ifi £ j, AT () = {8, B} for 1 < i < s, (Bl,Bi+1) € B for 1 < i < s, and if s > 1, then
1(51{75“1)(7}) = Ti+1 for1 <1i<s.

We assume that A”~! is finite, throughout the rest of this section. Hence n(7,r — 1) < oo for each
slice 7 in Agd_‘g’. Now, we consider the following condition.

(C) For a slice 7 in A{)g?’, let 7;, B, B be as in the above lemma, let v; be the vertices of 5; not
contained in 7; and let a; = ¢(B;,v;) for 2 < i < s. Then we obtain (C-i) or (C-ii) by repeating the
following operation (**) on the sequence [ag,as, ..., as] of the above integers.

(**) Remove an integer a; equal to —1 and add 1 to the integers a;+1 on both sides of a;, if 2 < i < s.
While, if ¢ = 2 (resp. s) then add 1 only to the right (resp. left) integer as (resp. as_1).

(C) a] (a £ 0).

(C-ii) [af,ab,...,a)]] (1>2,a

Proposition 6. If a Z-weight ¢ satisfies (C) around a slice 7 in A 4*, then the following holds. Let

s, Ti, Bi, BL, vi be as in the above lemma. If we determine elements ey, ..., €541, f1, ..., f,_2 in N so
that {e;,e;41,f1,...,f._2} is a basis of N for 1 < i < s and that

r—2

ei—1+ ¢(Bivi)ei +eip1 + Z O(Bi, wi ;)f; =0

Jj=1



for 2 <1 < 's, where w; ; are vertices of 7; with l(B;,Bwl)(wi,j) =wipq,; for1 <i<s,1<j5<r—2, then
there exists an element e* in M such that (e*,f;) = (e*,e;) = (€*,es41) =0, (e*,e;) >0 for2<i<s
in the case (C-i) a =0, or (e*,f;) = (e*,e1) =0, (e*,e;) >0 for 2 <i < s+ 1 in the other cases.

Proof. Let a; = ¢(B;,v;) and let L be the submodule of N spanned by fi, ..., f._o. If [ag,...,a]
becomes [a] by repeating the operation (**), then e; +aey + es41 € L for certain 2 < k < s. Hence there
exists an element e* in M such that

<e*7fj> = <e*7e1> =0, <e*ﬂek> =1, <e*7e5+1> = 70‘(2 O)

We easily see that (e*,e;) > 0for 2 <i < s. Next, assume that [a, ..., as] becomes [ay, ..., aj] (a} < —2).
b

Then e;; , + a;-eij +e,,, € L(2<j <) for certain 1 =4y < iy <--- <ijy1 = s+ 1. Let e* be the
element in M determined by (e*,f;) = (e*,e1) =0, (e*,e;,) = 1. Then

(e, ei,) = _a/2<e*’ei2> —(e",e;,) > 2(e", e;,) — (€7, e;,) = (€7, €;,).

In a similar manner, we obtain (e*,e;,) < (e*,e;,) < --- < (e*,e;_,). Hence (e*,e;) > 1for2 <i < s+1.
U

2 Construction of fans

Let (A, B, {ly}sep) be a finite simplicial system with a Z-weight ¢ satisfying the conditions (M) and (C)
around all slices in Al 3 and Arbg?’, respectively. Let A?B be the set of slices in Al 3 around which ¢
satisfies (M-i) and let AZZ3 = AT\ AT™%. Let T = {J,ca, @°, where Ay = A" PUAIT?UA[ ™. Then
T is a connected topological manifold by the condition (M-1) (a). First, we construct a simplicial system
inducing a toplogical space A with a Galois covering f : A — A whose restriction f| 1) to 1), is
a universal covering.

For b = (B1,32) in B, we express as b(1) = 31, b(2) = B2, b = (B2, 51). Choose a simplex ag in A" L.
Let

Path(A) = ({(br..... ) | b € B.G(bi (1) = a0, G(0i(2)) = Gl (W} I0Y) / ~

Here p ~ ¢ implies that p turns to ¢ by a finite repetition of the following two operations and their
inverses.

1. Remove bj, b;1, if bj = bji1.

2. Remove bji1,bj42,...,bj4s, if there exists a slice 7 in A~ satisfying the following conditions.
I7YF) = Un U U, A72(1y) = {8:,8/}, bjri = (B}, Bi41) for 1 < i < s, where 8541 = S,
Iy, (1) = Tip1 for 1 <i <'s, where 7,41 = 71.

For each p = [b1,ba,...,b] in Path(A), let a(p) be a copy of o, := G(bi(2)) (aj] = o) with an
isomorphism f, : a(p) ~ a,. Let A7 = {a(p) | p € Path(A)} and let A = U:;Ol At where A" is the set
of i-dimensional faces of simplices in A1 Let

B = {(fy s ) Sy (Brer@)) [ p = (b1, bi] € Path(A), bir € B, Glbia (1)) = a,).

Lemma 7. The above B satisfies (i)-(iv) in the previous section.

Proof. (i) and (iii) are obvious. Also (ii) holds, because

Uior e O 20)s Ft B (D)) = () g B (1), (b1 (2)) € B.

bl+1 [b1a~~7bl+17bl+l



For a([br,...,bi]) and (b, b)), B = fiph oy Bu(2)s B2 = fil o (D), s B = fi ) (01(2)),
B = [ (01(1), By = 7 (01(1); s Bremtr = f[g,llw_,b;”](b;n(Q)) satisfy the condition (iv). O

For (81, 82) € B, let (g, 5,) = fa, 0l © fasjs,, Where a; = G(8,), b = (fa, (B1), faz(B2)) € B. Then
{lv},c i satisfies (v). Hence (A, B,{ly},.5) is a simplicial system. Let A be the induced topological
space and let I: Udeﬁd — A be the quot_ienj map. We can deﬁn(_e t}ie map f: Uy 370 = Upeaa b}i
{fp}pepatn(a). Clearly, there exists a map f: A — A with I o f = foI. Since B satisfies (iv), f and f

are surjevtive. The restriction of f to f~1(T') is unramified. Moreover, it is a universal covering, by the
following.

Lemma 8. f~Y(T) is simply connected.

Proof. Let o be a point in the interior of a([]) and let s : [0,1] — f~1(T) be a continuous map
with s(0) = s(1) = I(x0). We may assume that s does not intersect with f‘l(UaeAzfsao) and intersects
with B := f~1 (U, Ar—20°) transversally. Then Im(s) N E = {s(t1),...,s(t;)} for certain 0 =ty < t; <

<t <ty = 1 and (f 05)([0,¢1) U (t1,1]) C I(ag). There exist simplices a; in A"~! such that
(f 0 8)((tistit1)) C I(af) for 1 < ¢ <1 —1. Let 8; be the (r — 2)-dimensional face of a; containing
1imt_>ti+0(l‘;%, o fos)(t) for 1 <i < I, where ay = ag. Let 3/ be the (r — 2)-dimensional face of «;
(I %Ofos)(t) for 0 < i <1[l—1. Then b; = (8/_,0;) € Bfor1 <i <1 and

p = [b1,ba,...,b] € Path(A). Since s(t) € I(a([b1,...,b])) for t; < t < t;41 and s(1) € I(a(]])),

containing limy .4, , o |;

a(p) = a([]), i.e., p = []. On the other hand, if (by,...,b) turns to p’ by one of the operations 1, 2 and
their inverses, then there exists a continuous map s’ : [0,1] — f~1(T) homotope to s from which we
obtain p’ by the above way. Hence s is zero homotope. |

Path®(A) := {p € Path(A) | oy, = g} is a group with respect to the product [by, ..., b][b;, ..., b,] =
[b1,..., by, b5, ...,b ] and acts on A" freely, by [b1,...,ba([b},...,0,]) = a([b,..., by, 1y bal)

Path®(A) acts also on Usez @ and A by pr = (fog © fq)(a:) for a point z in a(q). Hence f: A — Ais a
Galois covering and Path®(A) is the Galois group of f.

Proposition 9. There exist a map h : A°(= {vetices of A}) — N \ {0} and a homomorphism

p: PathO(A) — GL(N) satisfying the following: {(h o f)(vl), (ho f)(vg), ..., (hoI)(v.)} is a basis of N
for each simplex T1v3 -0, in A"~ and

(hoI)(v1) + (ho I)(wi) + Y ¢(£(B2), f(wi))(hoI)(w;) =0

i=2
holds for each b = (31, 82) in g, where T1vg -0, = G(f1), wrws - w, = G(B2) and lp(v;) = w; for
2 < < r. Moreover, h(pv) = p(p)h(v) for p € Path®(A) and v € A”.

Proof. Let wuy, ug, -+, u, be the vertices of a([ ]). Let {ej,eq,...,e.} be a basis of N and let
H(u;) = e; for 1 <17 <r. Next, assume that uguz - u, is in Airn_2 and that b = (uguz -, Waws -~ Wy )

is in B with Ip(u;)) = w; for 2 < 4 < r. Let wy be the vertex of G(waws~-w,) not contained in
waws - wy. Let H(w;) = H(u;) for 2 < i <r and define H(w;) by

H(u1) + H(wr) + Z o(f (waws~wy), f(w;))H (w;) = 0.

=2

Then {H(w1), H(ws),...,H(w,)} is a basis of N. For any p in Path(A), choosing a representative of
p and repeating the above process, we can define H(v;) for the vertices v; of a(p) = Tyvz---v,. Then



{H(v1),H(v2),..., H(v,)} is a basis of N. Here, we note that H(v;) do not depend on the choice of a
representaive of p, by Proposition 3. Moreover, H(v) = H(w) if I(v) = I(w) for v,w in A°. Hence there
exists a map h: A® — N\ {0} with H = h o I|A0

Recall that pu; = (f; " o f})(us) for p in Path’(A). Hence we can define the homomorphism p(p) :
Path®(A) — GL(N) by p(p)H(u) = (H o f; o fi )(u). O

For any simplex o1 ---v; in g, f(vz) + f(vj) if i # j, by the above proposition. Hence any slice in A
is a simplex. Let

S(A) = {Rxoh(v1) + - - - + Rsoh(vg) | 10y are slices of A} U{{O}}

Then X(A) consists of non-singular cones, by the above proposition. However, it may not be a fan. For
example, Figure 2 is a part of A for such A which is a triangulation with one vertex of a 2-dimensional
real torus, where integers attached on both sides of edges on A are pull-back of those on A. Since
h(vg) = h(v1) + h(vs), (A) is not a fan.

Bl mar we of h(va) = —h(v1) + h(vs)
AL N, / \ 5> ol h(vs) = —2h(v1) + h(va) — 2h(vs)
% 2—- 39{» 2= 3# . 39"”8 h(ve) = —h(vl) + h(vs) — h(vs)
2/ \O / ’U4\ / U(j\ / h(U7) = ( ) h(’UQ) —1—2/1(123)
Ul(--z—-a—\(?: 2—- 3-\(—52— 3—V7 h(vg) = h(v1) + h(vs)
Figure 2

In the following, we consider the condition that ¥(A) becomes a fan. We define the map h : A >
5§71 = (Ng \ {0}) /R as follows. For each slice & = 77050y in A™!, let hg : @ — 577! be the map
defined by

Ba(tlvl + tovg + -+ + tT’UT) = pr(tlh(vl) + tgh(Ug) + -4 trh(vT)),

where pr : Ng \ {0} — S"~! is the canonical projection. If a N 3 # ) for , B in A1 then Ba‘amﬁ =

Bm(mﬁ. Hence there exists a map h : A — §™1 with E‘a = hy, for each a in A1, If I is injective, then
¥(A) is a fan. The following holds, by Proposiion 3.

Proposition 10. l_l‘fq(T) is a locally homeomorphism.

For a point y in S"~!, we denote by y*, the symmetric point of y, i.e., y* = pr(—v) if y = pr(v). Let
g2 = pr({(1 —t)vy +tve [ 0 <t < 1Y)
for y1 = pr(v1),y2 = pr(ve) # yi in S71.
DEFINITION. We call a subset X of S"~! convex, if 7y C X for any z,y # z* in X.

DEFINITION. We call a slice 7 in A]~® symmetric, if s = n(7,r — 1) is even and if ¢(3;,v;) =
A(Bits/2: Vigsy2) for 1 < i < s/2, where 7;, f3; are as in Lemma 1 and v; are the vertices of 3; which are
not contained in 7;.

In Example 1, the unique edge in A} is symmetric, only if ¢(au,v1) = ¢(aq,v2) = 0.
Proposition 11. If a slice T in A;_?’ is symmetric, then e;, €;y/2, f1, ..., f,_2 are contained in an

(r — 1)-dimensional subspace of Ng for 1 < i < s/2, where ey, ..., es f1, ..., f,_o are as in Proposition 3.

Proof. Let L be the submodule of N spanned by fi, ..., f._o and let ¢ : N — N/L(~ Z?) be
the canonical projection. Then it suffices to show that g(e;;s/2) = —q(e;) for 1 < i < 5/2. Let g



be the element in GL(N/L) sending g(e1) and q(ez) to q(eiys/2) and g(egys/2), respectively. Then
gq(e;) = qle}is/2) for 3 < i < s, where [k] = k (vesp. k —s), if k£ < s (resp. > s), because g(e;—1) +
aiq(e;) +q(eir1) = 0 for 1 < i < s and a;45/2 = a; for 1 < i < 5/2, where a; = ¢(B;,v;), eo = e,
es;+1 = e;. Hence g2 = 1. Since Rzoq(ei) + RZOQ(ei—H) N Rzoq(e[iJrS/g]) + R20Q(e[i+s/2+1]) = {0},
gz # x for any x in N/L\ {0}. Therefore, gr = —x. O

Let 7 be a slice in A™~3 and assume that f(7) is in A7™? and symmetric. Let AT2(7) = {B1, B, .., Bs}.
Here, we may assume that ; and 51+1 are faces of an (r — 1)-dimensional simplex for each 1 <i<s.

Then h(ﬁl U BHG/Q) is contained in an (r — 2)-dimensional great sphere of S™~! for 1 < i < £ 5, by the
above proposition.

Theorem 12. If all slices in A} ~3 are symmetric, then h is injective and its image is convex.

We borrow an idea in [8] for the proof.

DEFINITION. We call an injective continuous map s : [0,1] — K, segment, if the following holds:
If_ (h o s)(1) _;é (h o 5)(0)*, th_en Im(ﬁ? s) = (ZLOS)(O)(B O_S)(l) {f (h o s)(1) = (h o s)(0)*, then
(hos)(t) # (hos)(0)* and Im(hos) = (hos)(0)(hos)(t)U(hos)(t)(hos)(l) for any ¢ in (0, 1).

Proof of Theorem 12. It suffices to show that there exists a segment s with s(0) = x¢, s(1) = z for

any two points zg, x in A with xo # x. Fix a point zg in A and choose a _simplex ag in A" L which
contains zo. Let Ag = {ao}, A1 = {a € A1 agna e Am 2}, Ay = {a e A" 1\ (Ai_1 UA,) |anB e
A2 for 33 € A;}. Then A; NA; = if i # j and A = Uiso B, where R; = J,ep, @ We show the
following in the induction with respect to 7.

For any point = # z( in R;, there exists a segment s with s(0) = g, s(1) = z satisfying the condition
(A) : If Im(s) N B° = {s(to)} for B € A™72,0 <ty < 1, then s((t1,t0]) C R;, s([to,t2)) C Rj41 for certain
O0<ti <tg<ta<1,0<7 <.

For i = 0, the above holds, because h(ag) is convex. The value of the Z-weight ¢ < 0, by the condi-
tions (M), (C) and the assumption that all simplices in AfB are symmetric. Hence if z is in a simplex o
in Ay, then h(zo)h(x)Nh(agNay) # 0. Therefore, the above holds also for i = 1. Now assume that i > 2,
that the above holds for all j with 1 < j < ¢ and that « € R;41 \ R;. Let o be a simplex in A;;1 which
contains . Then there exists a simplex §; in A; with a N f; € A"=2. Let H be the closed hemisphere of
S"=1 which contains h(8;) and whose boundary contains h(a:N f3;), and let yo = h(zg). Then yq is in H,
by the condition (A) (see Figure 3). Assume that yoh(z) N h(an B;) # 0. Then there exists a point
on f; such that yoh(z) Nh(an ;) = {h(z1)}. Since there exists a segment s’ with s'(0) = x¢, s'(1) = x1,
also does s with s(0) = xg, s(1) = z satisfying (A) (see Figure 4).

H h(p
& Yo
h(\)
KNH
Yo
Figure 3 Figure 4 Figure 5

Now assume that yoh(x) N h(aN B;) = . Then there exists an (r — 2)-dimensional face p of a with

yoh(z) N h(u) # 0 (see Figure 5). In the following, we show that there exists a simplex B/ in A; with



w = anp Since « is an (r — 1)-dimensional simplex and u, o N G; are (r — 2)-dimensional faces,
A= pN(ang;) is an (r—3)-dimensional simplex. A is in ﬁ}”‘g, by Propositions 4 and 6. Hence there exist
simplices i1, Bi-2, - -+, Bj, Bj41, -+ B in A" such that A™"1(\) = {a, Bis Bie1y -5 By Bas -5 Bl
Br N Bry1, B, N By € 8“2()\) for j <k <i, BiNa = p, where j =i — %n()\,r — 1)+ 1, Bi = B (see
Figure 6). Let K be the open hemisphere of S"jl which does not contain h(c) and whose boundary
contains h(p). Then yo is in K N H. Moreover, h(3;) C K N H, by Proposition 11. Let V' be a small
neighborhood of the image h(ct())) under h of the center ct(A) of \. Then VN K NH C h(;). Let w
be a point in the interior 39 of f; near ct(\). Then yoh(w) N h(Bx N Bry1) # O for j < k < i. Hence
Bi,1 € Aifl, 61',2 € Ai,Q, ceny 6]' S Aj, by the condition (A) Therefore, B;‘-&-l € Aj+1, ﬂ§<+2 € Aj+2, RN

Figure 6

Remark 1. Even if a slice in A?‘g is not symmetric, h may be injective. In Example 1, when a # 0,
the unique edge in A% is not symmetric. However, h is injective and X(A) is a fan. Let w1, ws, w3, wy be
the vertices of a tetrahedron in A with f(w;) = v; and let ey = h(w), ez = h(ws) — h(wy), 3 = h(ws),
es = h(wg) — h(ws). Then {e1, ez, e3,e4} is a basis of N and X(A) = {faces of R>oz; + R>ozit1 +
Rzoyj + Rzoyj+1 | i,j S Z}, where

. 1. .
x; =€) +iey and yjzij(j—l)ae2+e3+]e4

2. Even if h is not injective, X(A) may be a fan. Figure 7 is a part of A for such A which is a

triangulation with one vertex of a 2-dimensional real torus. Let g; be the element in Gal(f) sending vy,

vg, U3 10 vg, v7, vs, respectively. Then p(g1) = I3. Let g2 be the element in Gal(f) sending vs, vy4, v5 to
v1, Va9, v3, respectively. Then Gal(f) is generated by ¢g; and gs.

1 31-;:—-1— 32
/o 1\ v5/0 1 v3/0 N h(vs) = —h(v1) + 2h(v3) h(vg) = h(v1)
g 3-}%-21 3-&21 3—_1)1} h(vs) = h(vi) — h(vz) — h(v3) h(vs) = h(vs)
oﬁ_ __() 1_ __o 1_ __0 ! h(UG) = 2h(vl) - 2h(112) - 3h(1}3)
2/ \-1 2/ \-1 2/ \-1 2/ h(vz) = h(v2)
USL-l—-3-¥--1—-3-V--1—-3-V ]
U9 V10 v11 Figure 7

We easily see that h(v) + h(gav) + h(giv) = h(g3v) for any vertex v of A. Let P = wywaws, where
w; = h(v;). Then p(g2)P C P. Let 7 = U30304 U U30405. Then 7 is a fundamental domain of Gal(f) and
P\ p(g2)P = k() (see Figure 8). Hence A/g% — S? is injective and X(A) is a fan.
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=, P \ P(gz)P
i = h(g5U30475)

/\ Bi = h(givav377)
/"

Figure 8

Ql

3 Subvarieties

Let (A, B,{ls}bcn), ¢ and A be as in Section 1. Let h : A° 5 N and p Gal(f) — GL(N) be the map
and the homomorphism, respectively, in Proposition 9. Assume that h:A— S 1is injective. Hence
Y(A) = {o(@t) | it are simplices in A} J{{0}} is a fan, where o(v1---v;) = R>oh(v1) + -+ + R>oh(vy).
Let Y = Tyemb(X(A)) be the toric variety associated to the fan X(A), and let T' = p(Gal(f)) be the
image of p. Then Y is non-singular and I" acts on Y. Let i be a simplex in A. We denote by V(i) the
closure orb(o(f1)) of the orbit corresponding to the cone o(fi), which is an (r — dim i — 1)-dimensional
submanifold of Y. If dimfi = r — 1, then V(f) is a point. If f(j) is in Al-2 or A7 2, then V(i) is
biholomorphic to P! or C, respectively. In the following, we study the structure of V (f1) for a simplex /i
with dim & < r — 3. For a simplex « in A and a proper face u of «, we denote by a*, the maximal face

of a with pNa* = . Let fi be a slice of A and assume that s :=dimpg+1 <7 — 2. Let
Al ={a [ p<ae A" I(n) =},

and define A[f]*, A[p] in a similar manner as A?, A. Here we assume that two different simplices in
Alua]"=*~! do not have common vertices. For example, in the case that i = I(v;) = I(vs) in Example 1,
we consider v3 in 770203027 = T20304 and U1050304°2 = D10304 as different points. Let

Bla] = {(a”, 8) | (o, 8) € B, v < a,p < B, 1(v) = I() = 1, Lia,p)(v) = p},

and let l(qv gu) = l(a,g)jav- Then (A[f], B[], {lo}sep[a)) is a simplicial system. Let A[f] be the induced
toplogical space and let I;; : Uyeajma — Alfi] be the quotient map. We denote by ¢(;) the Z-weight of
(Ala], B[], {lv }oelp)) defined by ¢z (8*,v) = ¢(B,v). Obviously, ¢z satisfies (vi) and the following
holds.

Proposition 13. Let i a slice of A with s(= dimf + 1) < r — 2. If a slice § of A with fi < (3 is in
AT=% or AT3 | then B* is in (A[f])°~% or (A[])° "2, respectively, where B = I,(B") for y < 3 with
p=1I(p), B=1(B). If r —s >3 and ¢ satisfies the condition (M) or (C) around a slice 3 in A™3(f),
then so does |z the same condition around B* in (A[E])" ™. Moreover, if a slice 3 in A3 (i) N A3,

is symmetric, then so is " in (A[a]);*~°

11



Example 2. In Example 1, A[I(v1)], A[I(vs)], A[I(v1v3)], A[I(v102)] are as in Figure 9.

. /\O A[l (7773)] Al (v777)]
All(v1)] All(v3)] .
2 a1 D -2 T
é 0 0 % 2V
-2 o -2 -2 V13 V2¥3 V3P4
-a\/—a 4 Tz 0 5

Ifr—s=2 and /i is in AT, then we define Af[/;figzr@]g In the other cases, we define &[ﬁ] in a
similar manner as A. For slices 1 of A, we can define A[fi], B[] and A[f] in a similar manner as above.

Proposition 14. Let i a slice of A with s(= dimf + 1) < r — 2 and let i be a simplex of A with
f(i) = . Ifr —s > 3 and the map hj : Af[vﬂ]i/ﬁ Ny = Z"~7 in Proposition 9 for the simplicial
system (A[a], Bla], {lo }ve pja)), is injective, then A[a] ~ A[fi] and Path(A[u])? ~ (Pa‘ch(A)O)/1 ={p e
Path(A)° | pi = i}

Proof. Choose an element p in A with I(x) = i and take G(p) and G(u)* as «ap in the definition of
—— r—s—1 ~
Path(A) and Path(A[f]), respectively. Then we can define the map i : A[f] — Alj]"=*"! as

’L(Oé([( ili, 52)’( ;u’z, gs)""’( llm’ ﬁ{l)})):a([(ﬁiaﬁ2)v(65’63)’"'7(ﬁll7ﬁl+1)])uv

by Proposition 13, where v = f[?ﬁl, B2),on(B! ﬁl+1)](ﬂl+1). We easily see that this map is surjective. Hence
1B2)se (Bl

i induces a surjective map i : Afji] — ﬁ[ﬂ] Let L be the submodule of N spanned by the images under
h of the vertices of fi. Let hg : A[a]® — N/L be the map induced by h and let Ijz : A[i] — A[fi] be the
quotient map. Then

T—S

(i © Ty (wr) + (g © Ty ) (wi) + 3 by (F (@2 w075), f (wi) (s © Tz (wi) = 0
=2
for wiwy - Wy—g, wjwh - wl_, € A[)r—=1 with f[ﬁ](wi) = .ﬂﬁ](wg) for 2 < i < r — s, because

S(f(B), f(wi)) = by (f (Wz W, =), f(wy)), where f is the simplex in A™~2 with 57" = w5 =~~w,— for a
face /i’ of B. Let g : Ny — N/L be the linear map sending hy (u;) to (h;o9)(u;), where uy, ..., u,_ are the

vertices of Ijz) (v ([])). Then gohy = hyo i|§[ﬁ]°' Hence i is injective and Path(A[f])° ~ (Path(A)°)
O

Iy
If i is in Ag_?’ or hy is injective, then V(f) is biholomorphic to the toric variety associated to the fan

Y(A[g]), by [4, Corollary 1.7] and the above proposition. In particular, V(f) is a compact toric surface,
if r —s=2and fi is in A]~>. For example, V(j1) is a Hirzebruch surface for i = I(7773) in Example 1.

4 Quotients

We keep notations and assumptions in the previous section. Especially, h is injective. Let X=Y \Tn.
Then X = J;cx0 V(). Let Af™ = {7 € A3 | f(7) € A"} and let

Al ={7e A" | A" 3(F) c AT73, |A"H(F)| < o0}

12



for0<i<r—4. Let
r—3
Rw=A1Ja2 Al
=0
and let Z = Usex,, V(R). Theri Z~C X. Let T be the image of the homomorphism p : Path®(A) —
GL(N) in Proposition 9 and let h : A — S"~! be the map in Section 2.
Proposition 15. D := H(U%e&n 7°) is an open set of S"~! and " acts on D properly discontinuously.
Proof. Let 7 be an element in Ay,. If dim 7 > r — 3, then a small neighborhood of any point in h(7°)
is contained in B(Udeﬁ(%) a°), where A(T) = {7} U U;;éim 741 A7(7). The same assertion holds also in
the case that dim 7 < r — 4, because ﬁgf NA™2(7) = 0 and |A"™"1(7)| < co. Hence the first half holds.

Let K be a compact set in D. Then J = {&@ € A" | h(a) N K # 0} is a finite set. Since Path®(A) acts
on A1 freely, {y € ' | yK N K # 0} C p({p € Path’(A) | pJ N J # 0}) is a finite set. O

Let C = R+¢D. Then C is an open cone, by the above proposition. Let ord : Ty — Ngr be the map
induced by —log| | : C* — R and let

U={yeY| there exists an open neighborhood U, of y such that U, \ X C ord™*(C)}.
Here we note that if D is convex, then U = Int(Fl(C)). Obviously, U N Ty = ord *(C). Let
Cz = Int( o(&))
acAr—1(F)
and let
U:={y €Y | there exists an open neighborhood U, of y such that U, \ X C ord™}(C5)}
for 7 in Aj,. Then U = Usex,, Us and Uz D V(7). Hence Z C U.
Proposition 16. I' acts on U properly discontinuously.

Proof. Since ﬁ\f( = ordfl(C), if ﬁ;ﬁﬁ,} # 0, then C:NCy # 0 for 7, fuin A;,. Hence {a e Ain | U:N
Un # 0}| < +oo for any 7 in Ay,. Since Path®(A) acts on A7~ freely, [{y € T' | /U N Uz # 0} < +o0
for 7, i in Ay,. Hence T' acts on U properly discontinuously. O

Let U = U/T, let X = (X NU)/T and let Z = Z/T. Since A is a dual graph of X, so is A of X. If 7
is in Ay, then V(7) is compact. Hence we have:

Proposition 17. Z is a compact analytic subset of U.

5 Degenerating families

We keep notations and assumptions in the previous section. Let s be a positive integer smaller than r
and let L = Z°. Let {f1,f5,...,f;} be a basis of L and let A = R>of1 + R>ofs + -+ + R>ofs.

Proposition 18. If there exists a continuous map H : A — X satisfying the following conditions (i),
(ii), (iii), then there exists a linear map F : N — L sending all r-dimensional cones in 3(A) to A and
F o~ =F for all elements v in I

13



(i) H(v) € L for all vertices v of A.
(ii) R>oH (&) = A for all (r — 1)-dimensional slices & of A.
(iii) R>o(H o I)(v3 - 0,) = A and

(HoI)(v1)+ (HoI(w +Z¢ Wy, w;)(H o I)(w;) = 0

1=2

for any (vg -+ v,,ws---w,) in B, where v; and w; are the vertices of G(vz -+~ v,) and G(w3 - -w,) not
contained in v - - - v, and ws - - - W,., respectively.

Proof. Choose a simplex Tyug -~y of A”1. Since {(hoI)(uy),(hoI)(us),...,(holI)(u,)} is a basis
of N, we can define a linear map F : N — L so that (FohoI)(u;) = (HoIo f)(u;) for 1 <i<r. If
(U Uy, wWa - wy) is in E, Lz jwz=wy) (us) = w; for 2 <i <r and G(wa -~ w,) = Wiwy - - - Wy, then
by the condition (iii)

T

(FohoD(w) = F(~(hoDuw)~ Y o(f(@ar), fw))(ho Dw)

= —(Holof)(w)=Y o(f@s—wy), f(w))(Holof)(w)=(Holof)(w)

=2

because I(uz) = I(w;) for 2 <i <r. In a similar manner, we see that (F ohoI)(w)= (HoIo f)(w) for
all win A%, Since Io f = fol, (Foh)(w) = (H o f)(w) for all @ in A°. Hence (F o h)(gd) = (F o h)(w)
for any element g in Gal(f). O

F in the above proposition induces a holomorphic map w : U — D, where D = Int([T, — Lr]~1()))
is an open set of Tremb({faces of A\}) ~ C* biholomorphic to an s-dimensional polydisc. In the case
s = 1, we obtain:

Corollary 19. IfZ:;ll d(B,v;) = =2 forany B =71 0,71 In A;:Q, then there exists a holomorphic
map w from U to an open disc with w=1(0) = X.

Obviously, the following holds.

Proposition 20. If A and ¢ satisty the assumption of the above proposition, {«a € AEEQ | R>oH (o) =
A} =0and {a € A" | RsoH(a) = A} = Al for s — 1 < i <r — 3, then w!(orb(\)) = Z.

Example 3. In Example 1, we can define H : A — A so that (H o I)(v1) = f1, (H o I)(v3) = f for
s = 2. Then the assumption of Proposition 18 is satsified. ~1(0) is irreducible and its normalization is
biholomorphic to a Hirzebruch surface. Generic fibers of w are biholomorphic to (C*)?/{g1, g2), which
are hyperelliptic surfaces in the case a = 0, where g : (21, 22) = (s21,t25 "), g2 @ (21, 22) = (2125, 22)
(s,t € C*).

V2 Us V2 f
« » o2

\ / \ / i, H(Ug) = H(Ug) = fg

-1.0

[ ]
V1 1 . f,
Figure 10
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Example 4. Let r = 3, s = 2. A and H in Figure 10 satisfy the assumption of Proposition 18.
Generic fibers of w are elliptic curves. w™!(orb())) is a degenerate curve of type I3 (see [2]). For
z € orb(R>ofi), @ !(z) are of type I;. In a similar manner, we obtain degnerating families whose base
spaces have any dimension greater than 2.

6 Singularities

We keep notations and assumptions in Sections 3 and 4. Moreover, we assume that all slices in AE_?’ are
symmetric. Hence D in Proposition 15 is convex, by Theorem 12. Let C' = |X(A)|. Then C C C' C C.

Proposition 21. Assume that for any § =v1 - 0,_1 in Aﬂ:z,

r—1

=1

and that A becomes a polyhedral decomposition, if we remove the images under I of all simplices in Ai"n_2
on which the equality in the above inequality holds. Then C' is strongly convex.

Proof. Let O be the polyhedral decomposition in the proposition and let O be the pull-back of O
under f : A — A. Let P be a polyhedron of [J. By the assumption, there exists an element zp in M
such that (zp,h(w)) = 1 for any vertex w of A contained in P. First, we show that (zp,h(w)) > 1
for any vertex w of A not contained in P. Let h : A — Nr be the piecewise linear map defined by
h(tivy + - - 4 tyvy) = tih(v1) + - - - + t,h(v,) on each simplex 577, of A. Let Q be a polyhedron of [
with dim(P NQ) =r —2. Then <£L'P, h( )) > 1 for any point y in Q\ (PN Q), by the assumption. Let
s:[0,1] = A be a segment in Section 2 such that s(0) is in the interior of P and that s(1) = w. Then it
suffices to show that d(t) = (z,, (hos)(t)) is an increasing function on [tg, 1], where t is the real number
with s(to) € OP. We can take s(0) so that Im(s) does not intersect simplices 7 of A with dim7 < r — 3.
Let t1, to and t3 be real numbers with 0 < t; <ty < t3 < 1. Then (hos)(ts) = a(h o s)(t1) 4+ b(h o s)(ts)
for certain positive real numbers a and b. Let Py and Ps be polyhedra of [ containing s(t;) and s(ts),
respectively. Assume that P} = P;. Then a + b = 1. Hence if d(t1) < d(t2), then d(t2) < d(t3). Assume
that dim(Py N P3) = r — 2 and that s(t1),s(t3) € P1 N Ps. Then a +b < 1, because there exists an
element x in M such that (z, h(y)) = 1 for all points y in P; and that (z,h(y)) > 1 for all points y in
P\ P;. Hence d(t2) = ad(t1) + bd(ts) < (a+ b) max{d(t1),d(t3)} < max{d(t1),d(t3)}. Therefore, d(t) is
an increasing function on [tg, 1].

Let Fhq (resp. Fin) be the set of (r — 2)-dimensional faces of P which are contained (resp. not
contained) in the boundary of A. For any @ in Fi,q, there exists an element z¢ in M such that (z¢, h(u)) =
0 (resp. > 0) for any point u on @ (resp. P). Since C’ is convex, (zg,y) > 0 for any point y on C’. For
any @ in Fi,, there exists a polyhedron P’ of O with PN P’ = Q. Let xg be the element in M such that
(xg, h(v)) =1 for any vertex v of A contained in P’. Then as we see in the above, (xq, h(v)) > 1 for any
vertex v of A not contained in P’. Let Cy = {y € Nr | (zq,y) > 0 for Q € F,qU Fi,}. Then Cy D '
and Hp N Cy is compact for the hyperplane Hp of Ng containing P. O

Throughout the rest of this section, we assume that C” is strongly convex. Let C* = {x € Mg | (z,y) >

0 for y € C'}. Then C* is an r-dimensional cone. For each x in M, we may consider the character

* Ty — C* of x as a rational function on Y, whose restriction to Ty is holomorphic. Here we use the

notation e” instead of e(z) in [4]. For a 1-dimensional cone o in 3(A), e” has zero along orb(o) of order

(x,y,), where y, is the primitive element in N spaning . Hence e” is a holomorphic function on Y for

x in C* N M. Moreover, for a cone ¢ in £(A), e® does not vanish along orb(c), if and only if (z,y) =0
for all points y in 0. Hence e€” vanishes along Z for any x in C* N M, by Proposition 15.
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Proposition 22. A |€7| converges on U.

zeC*

Proof. For any point z on U \ X = ord™'(C), there exists an r-dimensional simplicial rational cone &
contained in ¢’ and containing ord(z) in the interior. Since 0¥ = {z € MR | {(z,y) > 0fory € o} D C*
and ) vy |€7] converges on ord™*(Int(c)) which contains z, so does Y zecenn €71 O

|e?*| = e%e” is a plurisubharmonic function on U vanishing along Z for any point = in C* N M.
GL(N) acts on M to the right by (zv,y) = (x,~vy). Hence I' acts on C* N M. By the above proposition,
erxor |e?*| converges and is a I'-invariant plurisubharmonic function on U for any point xg in C* N M.
We denote by f*° the induced function on U, i.e., f*° o [U - U] =3 ., ¢ le?®|.

Let 7 be a simplex in A and let C[7] = p(C) be the image of C' under the projection p : Ng —
Nr/Ro(7). By Proposition 15, C[7] = Ng/Ro(7), if and only if 7 is in Ay,. Let Al = {f(7) | 7 € Al}
for 0 <i<r—4 and let

Al = {7 € A" | C[7] is strongly convex for a simplex 7 of A with f(7) = 7}

for 0 <i <r—3. Aslice 7in A7 % is not in AZ73, if and only if ¢} = a5 = --- = a] = —2 in the condition
(M-ii), by Proposition 4. A slice 7 in Aj4® is not in A7~3, if and only if (C-i) [0] holds in the condition
(C), by Proposition 6. For 7 in A? with 0 < i < r — 4, if A[7] satisfies the assumption of Proposition 21,
then 7 is in A¢, by Propositions 13 and 14.

Theorem 23. If A" = ALUA! for 0 <i <r — 3, then Z is contractible to a point in U.

Proof. Let 7 be a simplex in AT72JUIZS Al and let s = dimo(7) = dim7 + 1. Let L = {z €
M | (x,y) = 0fory € Ro(7) N N}. Then dim(C* N Lg) = dim L = r — s. Hence there exist linearly
independent r — s elements 1, ..., ,—s in C* N L. On the other hand, C' N Ro(7) = o(7), because
any face i of 7 is in Adm 2 Hence p(C*) = o(7)", where p: Mg — Mg/Lg is the canonical projection
and o(7)" is the dual cone of o(7) considered as a cone in Ro(7) N N. Since o(7) is an s-dimensional
non-singular cone, there exist s elements x;._, 1, ..., . in p(C*) such that {z]._,,,..., 2.} is a basis of
M/L and that R>ox_, | +---+R>oz] = p(C*). There exists an element z; in C* N M with p(z;) = ]
for each r — s+ 1 < i < r, because dim(C* N Lr) = r — s and C* is convex. Then (e*',...,e"r) :
Y(7) = (C*)"* x C® is a locally biholomorphic map, where Y (7) = Tnyemb({faces of o(7)}) C Y.
Hence |e®®1| + ... + |e?¥r| is strictly plurisubhrmonic on Y (7). Therefore, so is f*1 + --. + % on

(Users Y (@) N T0) /1.

Since A consists of finetely many slices and the above Y (7) is an open neighborhood of orb(o (7)),
there exists a finite subset S of C* N M such that f = ) _f* is a plurisubharmonic function on U
vanising only along Z and strictly plurisubharmonic on U\ Z. Since Z is compact, there exists a positive
number € such that the closure in U of the connected component U, of {z € U | f(z) < €} containing Z,
is compact. Then U, is strictly Levi pseudoconvex. Hence there exists a holomorphic map from U, to
an analytic space sending Z to a point, by [1, XI, C, Theorem 4]. This map is biholomorphic on U, \ Z,
because the restriction fiy\ z of f is strictly plurisubharmonic. 0

Assume that A{;gz = @, that A™3 = Ag_?’ and that A is a compact topological manifold. Then
f:A — Ais a universal covering, by Lemma 8. Hence A = Al for 0 <i <7 —4 and X = Z. Thus we
obtain a cusp singularity, by the above theorem,

Example 5. The left A in Figure 11 satisfies the condition (M) and the assumption of Proposition
21. Z is irreducible and its normalization is biholomorphic to a toric surface obtained from P! x P!
blowing up 4 points(see the right in Figure 11).
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Figure 11

Example 6. There exists an r-dimensional isolated singularity with a resolution whose exceptional
set is a curve satisfying the following conditions (1) and (2).

(1) Each irreducible component is a non-singular rational curve with only two points at which other
irreducible components intersect, or a rational curve with a node only at which other irreducible compo-
nents intersect.

(2) At any singular point, at most r branches of irreducible components intersect to each other.

A simplicial system giving the above, is obtained as follows: To each singular point, correspond an (r—1)-
dimensional simplex and if there exists an irreducible curve passing through singular points x and y, then
glue (r — 2)-dimensional faces of the simplices corresponding to x and y. Next determine a Z-weight ¢ so
that ¢ satisfies (M-ii) and (C) around slices in Al ® and Aj*, respectively. This condition is satisfied,
if ¢ < —3. For example, the right curve in Figure 12 is obtained from the left A. Also a curve consist-
ing of rational curves intersecting to each other as edges of a polyhedron, satisfies the above condition (1).

M. .
N,
< > <

2 2 %2
~ 3;12,-2/\/\-2

Figure 12

Theorem 24. If (I) or (II) in the following holds for each simplex 7 in Ay,, then there exists a
surjective proper holomorphic map w : V — W from an open neighborhood V of Z to a finite covering
W of a Stein analytic space such that m* : Ow — Oy is an isomorphism, that the restriction my\ x of w
to V' \ X is biholomorphic and that each fiber of 7 is connected, where Oy and Oy, are the rings of the
holomorphic functions on V_and W, respectively.

(I) If all faces of T are in Ay, then there exists an element xo in C*NM such that (x, h(v)) > (zo, h(v))
for all x in xoI" and all vertices v of 7 and that for any x in zoI" \ {x¢}, there exists a vertex v of T with
(2. h(v)) > (w0, h(v)). ) )

(II) If there exists a face of T which is not in Ay, then for each face i of T which is not in A;y,, there
exists an element x; in C* N M satisfying the following two conditions (1) and (2).

(1) (xp, h(v)) = 0 for all vertices v of fi.

(2) (x,h(v)) > (xp, h(v)) for all z in x;I" and all vertices v of 7, and for any = in x;I" \ {x;}, there
exists a vertex v of 7 with (x, h(v)) > (xz, h(v)).

Proof. First, we show that there exist an open neighborhood Vj of Z relatively compact in U and
holomorphic functions fi, ..., fs on U such that {w € V; | fi(w) = -+ = fs(w) = 0} = Z. We note
that Z = U._x_orb(c(7)), because the closure of orb(c(7)) is the union of orb(c(f)) with 7 < i and if

7€ Ay, and T < [i, then 1 € Ain. Let 7 be a simplex in Ap. If (I) holds for 7, then for any point z in
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orb(c(7)), there exists a neighborhood U, of z such that
{fwel. | fw) =0={wel, |e™w)=0=V()U---UV(y)NU. = ZnU.,

where f*0 = > wcxor € and vi, ..., vy are the vertices of 7. Assume that (II) holds for 7. Then for any

point z in orb(c(7)) and for each face i of 7 not in Ay, there exists a neighborhood ﬁz,ﬂ of z such that

{weU,;| ffi(w) =0} = {w e ﬁz,ﬂ | €7 (w) = 0}, by the condition (2), where f*# = > vexr e

Hence f*# does not vanish on ﬁz,ﬂ \ (V(v1) U---UV(v;)) by the condiiton (1), where vy, ..., v; are the

vertices of 7 which are not on fi. Therefore, {w € U, | f*#(w) = 0 for all i € A} = Z N U., where A
is the set of faces of 7 not in Ay, and U, = ﬂﬁeA U, . Since Z is compact, there exist finitely many

points 21, ..., z; on Z such that Vo :=U,, U---UU, is an open neighborhood of Z relatively compact
in U, where U,, are the images of U,, under the canonical projection U — U. Moreover, there exist
holomorphic functions fi, ..., fs on U with {w € V | fi(w) = --- = fs(w) = 0} = Z, because the above

functions f*0 and f*# are I-invariant.

Let fo = |fi| +|f2|+- -+ |fs|- Then {z € Vi | fo(z) = 0} = Z. Since 9V} is compact and Z NV, = 0,
€0 :=inf{fy(2) | z € OVp} > 0. Hence V := {z € Vi | | fi(2)| < €o/s for 1 < i < s} is an open neighborhood
of Z relatively compact in U and for any point z in 9V there exists a suffix ¢ with |f;(2)| = €o/s. Let
K be a compact set in V. Then m; := ||fil|lx = sup{|fi(2)| | z € K} < €p/s. Hence {z € V | |f(2)] <
[|fllx for all f € Oy} C{z €V ||fi(2)]| <m,;for 1 <i < s} is compact. Thus by [1, VII, D, Theorem
9], there exists a surjective holomorphic map 7y : V' — Wy from V to a Stein analytic space Wy such that
75« Ow, — Oy is an isomorphism. Let K’ be a compact set in Wy. Then m!, := ||(7) "1 (fi)||x < €0/s.
Hence 7, {(K') € {z € V| |fi(2)] < m/ for 1 < i < s} is compact. Let uy, ua, ..., u, be linearly
independent 7 elements in C* N M. Then |e®“!|+ |€*2|+ - -+ |e*“"| is a plurisubharmonic function on Y’
whose restriction to Y\)? is strictly plurisubharmonic. Hence f** +f“2 4 ... 4+ f%r is a plurisubharmonic
function on U whose restriction to U \ X is strictly plurisubharmonic. Therefore, 7, ! (mo(2)) consists of
finite points, because it is compact for any point z in V'\ X. Applying Stein factorization(see [7, Theorem
1.9]) to mo, we obtain a desired map 7. O

The holomorphic map m in the above theorem maps Z to a point. On the other hand, irreducible
components of X which are not contained in Z, may contract to non-isolated singularities. In the
following, we give two examples of simplicial systems which give 3-dimensional non-isolated singularities.

Example 7. Let A be the triangulation of a compact topological surface obtained by gluing edges
joined by a thin curved line together of the development in Figure 13. Obviously, A is induced from
a simplicial system and A = A% . Let vjoov3 be a triangle of A and let e; = h(v;) for i = 1,2,3.
The faces of v70303 not in ﬁin are the vertices vy, vy and vs. Let {e},e}, e5} be the basis of M dual
to {e1,e2,e3}. In the following, we show that z; = e} + e} satisfies the condtion (II) for 7 = T1v503
or U103 and i = v1. Considering the canonical projection N — N/Ze; and by Proposition 4, we see
that {z € C* N M | (z,e1) = 0} = Z>ox;. Suppose that (z;y,e2) = 0 for an element v in I Then
(xj,ve2) = 0. However, {v € A0 | (i, h(v)) = 0} = {v1} and there does not exist an element p in
PathO(A) with pvy = vy, because f(v1) # f(v2). Hence (z,e3) > 1 = (xj,e2) for any element z in z;T.
Therefore, x; satisfies the condtions (1) and (2) in (II). Now, we describe the structure of X and the
restriction to X NV of the holomorphic map 7 in the above theorem. Z consists of three rational curves
meeting at two points (see Figure 14). Let X; = orb(R>pe;) N U and let X; be the image of X; under
the canonical projection U—Ufori= 1,2,3. Then U = (U\ X)UX; UXoUX5UZ and X; ~ )N(i/Fei
are elliptic surfaces. Let x; = e] + e5 + €5 —e!. Then z; is a ['¢,-invariant element in C* N M, because
(x;,ve;) = 0 and (x;,ve;) = 1 for any element 7 in I's, and j # ¢, and e” vanishes along X, for any
element z in ;T\ {z;}. Hence the holomorphic function f; on U with f; o [U — U] = Y vea,r €, gives
a fibration on X;.
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A fiber of 7 x,

Sing(W)

Figure 14

A fiber of | x\z

Figure 15 Figure 16

Example 8. Let A be the triangulation of a 2-dimensional compact topological space obtained by
gluing edges joined by a thin curved line together of the development in Figure 15. Obviously, A is
induced from a simplicial system and all vertices in A = A9, satisfy the condition (C-i) with a = 0. We
can easily verify the following two statements. For all vertices v of ﬁ, there exist primitive elements z,, in
C*N M such that {x € C*NM | (z, h(v)) = 0} = Z>ox, and that (z,, h(w)) =1 (resp. 0) for all vertices
w of A which and v are joined by an edge in Ay, (resp. ﬁéd). If (., h(w)) = 0 for a vertex w of A,
then f(v) = f(w) or f(v) and f(w) are joined by an edge in Al,. Hence all simplices 7 in Ay satisfy the
condition (IT). We easily see that Z consists of nine rational curves meeting as in Figure 16, that X \ Z
consisits of three connected compnents each of which is biholomorphic to the product of a cycle of two
rational curves and the punctured disc {z € C | 0 < |z| < 1} and that there exist holomorphic functions
on U which give the projections to the second factors of the products. Hence any fiber of the restriction
to VN (X \ Z) of the holomorphic map 7 of the above theorem, is a cycle of two rational curves.

7 Cusp singularities with irreducible exceptional sets

In this section, restricting ourselves to the case r = 3, AL, = 0, A® = A? and |A°] = 1, we prove the
following:

Theorem 25. For any negative even number (resp. negative integer) e, there exists a 3-dimensional
cusp singularity with a resolution satisfying the following conditions (1) and (2).

(1) The exceptional set is irreducible.

(2) The dual graph of the exceptional set is a triangulation of an orientable (resp. a non-orientable)
compact topological surface T with x(T') = e.
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We show the existence of a triangulation A with one vertex of a compact topological surface with an
automorphism of order 2 or 3, and a Z-weight on A which satisfies the condition (M-i) and is symmetric
around only one vertex. The numbers of triangles and edges of such a triangulation are 2 — 2e and 3 — 3e,
respectively, where e = x(A).

Lemma 26. For any multiple | of 6 not smaller than 12, there exists a sequence of | integers a1, as,
..., a; satisfying the condition (M-i) and the following two conditions.

(1) a; < —1 and if a; = —1, then a;4+1 < —1 for 1 < i <1, where ag = a;, aj+1 = a1.

(2) If i = j(mod {/6), then a; = a;.

Proof. For [ = 12, the sequence —1, —3, —1, —3, ... satisfies the conditions. For [ = 18, repeat 6
times the inverse operation of (*) in Section 1 on the above sequence so that the condition (2) still holds,
as —2, =1, —4, =2, —1, —4, .. .. For [ > 24, we obtain a desired sequence in a similar manner. O

Lemma 27. For any negative even number e, there exist a triangulation A with one vertex of an
orientable compact topological surface T with x(T') = e, and an automorphism of A of order 2 preserving
the orientation of T'.

U1 V2 Vg Vk4+1 U2k—1 V2k

U4k V4k—1 U3k+1 U3k  V2k+2 V2k+1
Figure 17
Proof. Let k = 1 — 5 and let A be the triangulation obtained by gluing the edges v;v;71 and
UitokUitit2k of the development in Figure 17 together as follows, for 1 < i < 2k, where v4p41 = v1.
Identifying the points tv; + (1 — t)v;11 and tv; 149k + (1 — t)vspor for 0 <t < 1. Then A has only one
vertex, because ged(4k, 2k +1) = 1. Moreover, A is a triangulation of an orientable compact topological
surface T with x(T) = e, because A has 4k — 2 = 2 — 2e triangles. In the development in Figure 17, the

rotation sending v; to very; gives an automorphism of A of order 2 preserving orientation. O
\ .
N
ajg—— as a18—— Qg ag —ais
v am N ~ ~ 7
v aiq a7 as ai az @13 aiq
a1
/N / N\ / \ /
ﬁs ~ as aq Qi aio air a16 as

s

Figure 18

Let A and g be a triangulation and an automorphism in the above lemma. Let v be the vertex of A
and let V' be a small neighborhood of v. Since gv = v, we may assume that gV = V. Let s = 3 — 3e.
We may assume that the intersection of V' with each edge of A consists of two connected components.
Then the number of pieces of edges in V' is 2s. Let e1, es, ..., eas be the pieces and assume that e; are
adjacent to ej41. If ge; = e;, then ges = €541, ges = €42, ... and ge; = eg;_1. Since ?=1,j=s+1.
Hence ge; = es4;. Obviously, there exists a simplicial system which induces A and A® = AY = {v}. Let
Tiy Bis Bi (1 < i < 2s) be as in Lemma 1 for 7 = v and let w; be the vertices of 8; with w; # 7;. Let
ai, as, ..., ass be a sequence of integers in Lemma 26. We define ¢(8;, w;) = a; (see Figure 18, the right
is for e = —2). Note that if a; and a; are attached to the both sides of an edge e, then a;y, and a4
are attached to those of ge. Since a; = a;45 for 1 <i < s and by Proposition 2, ¢ satisfies the condition
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(M-i) and symmetric. Moreover, the assumption of Proposition 21 is satisfied, by the condition (1) of
Lemma 26.

Lemma 28. For any negative integer e, there exist a triangulation A with one vertex of a non-
orientable compact topological surface T with x(T') = e, and an automorphism of A of order 3.

Proof. For e = —1, we can obtain a desired triangulation from the development in Figure 19, glueing
two edges joined by a thin curved line together, so that the orientation changes if a small circle is attached
on the line. Also for e = —4, that in Figure 21 gives a desired one, where Figure 21 is obatined from
Figure 19 inserting pieces of Figure 20 at the three arrowed edges. For e = —7,—10, ..., we can obtain
desired ones in a similar manner.

For e = —2 and —3, the developments in Figure 22 and 23, respectively, give desired ones. Also for
e =—5,—6,—8,—9,..., we can obtain desired ones as above. O

/N
-~

Figure 19 Figure 20

Figure 22 Figure 23

Let A and g be a triangulation and an automorphism, respectively in the above lemma. Let v be the
vertex of A and let V' be a small neighborhood of v. Since gv = v, we may assume that gV = V. Let
s = 2 — 2e. We may assume that the intersection of V' with each edge of A consists of two connected
components. Then the number of pieces of edges in V' is 3s. Let eq, ea, ..., egs be the pieces and assume
that e; are adjacent to e;j41. Then ge; = ej4s or €;12,. Let aq, aa, ..., azs be a sequence of integers in
Lemma 26. We use them as the value of Z-weight ¢ of A (see Figure 24, the right is for e = —1). Since
a; = ;s = aij42s for 1 < i < s and by Proposition 2, ¢ satisfies the condition (M-i). Moreover, ¢ is
symmetric, because a; = a;135/2 for 1 <4 < 3s/2.
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8 An example of a compact complex manifold V with 7(V) ~ Z

In this section, we give an example of a simplicial system (A, B,{ly}rep) and a Z-weight such that
the induced topological space A is a simplicial decomposition with one vertex of a compact topological
manifold 7' with 711(7) ~ Z and that A" = A{~3. To avoid complications, we use same symbols for
vertices on different simplices which are glued together by [, for some b in B.

Let a; = Dgu1 -~ 0;_10i11 - 0y for 1 <+ < r and let 3] be the (r — 2)-dimensional faces of o; which
do not contain v;. Let A"~ ={q; | 2 <i <r} and let

B = {( 376]2)|2SZ§7“,2§]§7"7@7£]}
B 85). (B2 89) |2 < i< r — 13 (B, BD). (83,50}

Let g giy(vr) = vk (k # 4, 5), Uigo g, ) (k) = verr (K # 0,4,7), Lgo g1, () = vo, Lo, g1y (Vk) = Vit
(k # 0,r —1,r), l(ﬁg,,@;)(vr—l) = vp and define the other I, so that the condition (v) holds. Then

(A, B, {ly}vep) is a simplicial system with A]7% = ) and |A°| = 1. Let ¢( T o) =1 (k#0), 6(B],v0) =

7

—1forj >2,¢(B,vr) =0 (k #7), d(B2,v,.) = —2fori <r, (B vx) = —1(k #r—1), ¢(B°, v,—1) = =3
and define the other values of ¢ so that the condition (vi) holds. Then ¢ satisfies (M-i) around all slices in
AT3 = AT=3 (see Figure 25 ~ 28, where the meaning of the integers attached to edges is as in Figure 29).

m

In the definition of Path(A), ( f, ,6’;)( ;?, Bi) ~ (BF, Bi) for integers i, j, k greater than 1 and different to
each other (see Figure 25), and (87, 8%, 1) ~ (82, 83)(8Y, B1)(BaT", BEq) for i =2,4,...,r — 1 (see Figure
26). Moreover,

(87, B2) ~ (B, 85) (B3, B3) (B3, B1) (B3, B2) ~ (B7, B3)(B3, B3)(B3, B1) (B, B3) (B3, B1) (B3, B2)

(see Figure 27). Choose a3 as ag in the definition of Path(A). Then we see by the above three relations
that any element in Path(A) is equal to

(83, 1) (8%, 851, (83, BB 85) (83, 8)], [((B4, 8D (8L, D) or [((8%,83)(51,89))" (85, 5]

for a non-negative integer i and an integer j # 3. For examples,

(83, 83) (85, 8)(B1, B3) (B3, B3)  ~ (B3, 83)(B, B5) (B3, B1) (B3, B3) (52, B3)
~ (83, B1)(B1, B3) ~ (B3, B1)(B%, B3) (B3, 53)
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In the following, we show that A is a simplicial decompostion of a compact topological manifold T with
71 (T) ~ Z. Let {e1,es,...,e.} beabasis of N and let ey = e; +ex+---+e,. Let H(z) = pr(toeo+tie;+
-+tre,) for points © = tgvg+t1v1+- - -+, (t; = 0) on a;, where pr : Ng \ {0} — S" ! is the canonical
projection. Then H(z) = H(l(ﬁgﬁ;)(x)) for points z on 37 and H(«;) N H(aj) = H(B!)if2<i<j<r.
Let g be the element in GL(N) sending eq, ..., e,_1 and e, to eq, ..., e, and ep, respectively. Let
E =pr(ejez--e,) and let F =J;_, H(;). Then F = E\ gE. Hence FUgF U---Ug'F = E\ gt'F
for i > 0. Since FNg'F = fori > r+1, g% acts on D := Uiez ¢'F properly discontinuously. Moreover,
D/g% is a topological manifold, because g% acts on D freely. Since E \ ¢'E is simply connected for

i>1r-+1,s0is D. On the other hand,

H(v;) + H(v;) + > $(B, vk) H (vg) = 0
ke{0,1,...,r1\{3,5}

for 2 <i < j <7, because H(v;) = e; for 0 < i < r. Hence if we define the map h in Section 2 so that
h(w;) = e; for the vertices w; of a([]) with f(w;) = v; (i # 3), then h(w) = H(f(w)) for the vertices w
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on o([(8L,83)]) (i =2,4,...,r). Since g~ H(l(59ﬁ3+1)(vﬂ)) H(v;) for 1 < j <r and

H(vo) + g~ H(v1) + Z o(B7, vx)H (vy) = 0
ke{l,...i—1,i+1,...,r}

for2<i<r—1, h(w) = g H (f(w)) for the vertices w on «([(85, 32)(87, Bi11)]). Hence

h(a([(83, 81) (B3, B3)])) = ( (@3)), because [(53, 33)(53. 3)] = (83, B1) (B, B5)]. Moreover,
h(o([((85, 1) (53, 5?))1(@%, BIN) = g~ (H(ay)) and h(a([((B3, 53)(B3, 83))" (B3, B5)) = ¢ (H ()

for any positive integer i. Therefore, the image of h : A — 571 is equal to D. Moreover, h is injective,
because D is a simply connected topological manifold and the restriction of h to the complement of the
(r — 4)-dimensional slices of A, is locally homeomorphic, by Proposition 10. Hence A is homeomorphic
to D/g? and Path®(A) = {[((83, 81 (8%, 8))'] | i € Z} ~ Z
Next, let
R = {t161 —|—t2e2—|—~~-—|—trer I ti 2 O,tl +t2++tr 2 1}

Then ¢"R C Int(R). Let S = R\ g"R. Then SNg"S = d(¢g"R) and SN g""S = for i > 2. Hence g%
acts on (J;cq g'"S properly discontinuously. Let Y be the toric variety associated to the fan ¥(A). Let

X and ord : Ty — Ng be as in Section 4. V := Uiez ord~'(gi*S) is an open set of Y containing X on
which g% acts properly discontinuously and freely. Hence V = V /g% is a complex manifold containing
the irreducible analytic set X := X /gZ%. Since ord 1(S) is compact, so is V. Since S% := U; 09”8 is
simply connected for any positive integer 4, m (ord~'(S%)) ~ N. We see that 7 (ord™*(S%)) ~ {1} in a
similar manner as the proof of [4, Proposition 1.9]. Hence Vs simply connected.

9 Deformations of group actions

Let ¥ and T be a fan in N and a subgroup of GL(N), respectively, satisfying the condition (F) in
Introduction. Tx acts on Y := Tnxemb(X) by multiplication and v ot = yt o~ for ¢t in Ty and v in
GL(N), because v(ty) = (vt)(yy) for y in Y. Let

ZND, Ty) = {t :T — T | t(y8) = t(y)(7t(5)) for 7,6 € T} D BYT, Ty) = {0ty | to € Tn'},

where (9to)(7) = (vto)ty ', and let H'(T', Ty) = ZY(I', Tw)/B*(I', T). For any element t in Z' (T, T),

I(t):= {t( )ov |~ €I} isagroup acting on Y and isomorphic to I'. If an open set U of Y is I'-invariant,
then t;'U is I'(9to)-invariant and U/T ~ t_lU /T(0ty) for any element ¢y in Tx. For an element ¢ in
ZY(T, Ty), let t be the element in Z'(I', Nr) : = {u : T — Ngr | u(7d) = u(y)+~u(§) for 7,6 € I'} defined
by #(vy) = (ordot)(y). Then I'(£) : = {f(y)oy | v € '} acts on Mc(N, X) = Y/CTy, where t(y)v = v+£(7)
for v in Ng. If an open set O of Mc(N, X) is T'(£)-invariant and I'(f) acts on O properly discontinuously,

then so does T'(t) on ord ' (O). In particular, T'(t) acts properly discontinuously on U in Section 6, if the
image t(I") of ¢ is contained in C'Ty.

Proposition 29. Theorem 23 is valid also for U(t) : = U/T'(t) and Z(t) : = Z/T(t) instead of U and
Z, respectively, if the image t(I') of an element t in Z1(I', T) is contained in CTy.

Proof. For every element z in M and every element v in T, [t(y)*e”| = | (t(y)(x)) e*| = |e*|. Hence
Doz 2o |e?*| is T'(t)-invariant for every element xo in M. Therefore, the proof of Theorem 23 is valid
also for U(t) and Z(t). O

Proposition 30. Theorem 24 is valid also for U(t), X(t) := (X NU)/I(t) and Z(t) instead of U,
X and Z, respectively, if the image t(I') of an element t in Z'(T', Ty) is contained in Ty (k) := {t €
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Tn | tF =1} for a positive integer k.

Proof. For every element z in M and every element v in T, (y)(kz) = (t(y)(z))® = 1. Hence
> weka,r € 18 T'(t)-invariant for every element z in M. Therefore, the proof of Theorem 24 is valid also

for U(t), X(t) and Z(t), replacing f* and f*» with f5% and f5r respectively. O

Let T be an infinte cyclic group generated by an element v in GL(N). We easily see that H*(I', Ty) =
1, if and only if det(y— I,.) # 0. This condition is satisfied by the group in Section 8 and those which give
2-dimensional Hilbert modular cusp singularities. Higher-dimensional Hilbert modular cusp singularities
are obtained from free abelian groups generated by elements in GL(N) which do not have eigenvalues
equal to 1.

Proposition 31. Let I' be a free abelian group generated by elements 71, 2, ..., v in GL(N) with
det(y; — I,) # 0. Then H' (', Ty) is a finite group. Moreover, H*(I',Tx) = 1, if det(y; — I,.) = £1.

Proof. Let g; be the endomorphism of Ty sending to to (vitg)ty " for 1 < i < I. Then g; is surjective
and the degree is equal to |det(vy; — I,)|. Let ¢ be any element in Z'(T',Ty). Then g;t(v;) = g;jt(vi),
because t(7;vj) = t(v;7:). Let to be an element in Ty with gitg = t(y1)~! and let ¢ = tdt;. Then

t'(v1) = t(y1)g1to = 1. Hence g1t'(7;) = git’'(71) = 1 for 2 < i <. Therefore, the assertion holds. O
We give another example of ' which is a free abelian group. Let {ej,es,...,e,.} be a basis of N
and let ay, ag, ..., ar,—1 be positive integers. Let I' be the group generated by the elements v, 72, ...,

Yr—1 in GL(N) defined as follows: v;e; =e; for 1 < j <r —1, y,e, = e, + a;e;. Let v be an element
in Z'(I,Ngr). Then (v, — I.)v(v;) = (v — I)v(7i), because v;v; = ;7. Let v(v;) = >p_; ¢jkes.
Then (v; — I)v(vj) = cjraie;. Hence cj. = 0 if r > 3. On the other hand, if v is in B'(I', Ng), then
v(7y;) = bae; for a real number b. First, we consider the case that r = 2. Let {e}, e}} be the basis of
M dual to {e;,e;}. Let A\ be a non-zero complex number and let ¢ be the element in Z!(T', Ty) with
t(y1)(e}) =1, t(y1)(e3) = X. Assume that |\ = 1. Then I'(f) = T, because #(v1) = (—log |\|)es = 0. Let

¥ = {{0},Rx>o(ie1 +e2),R>o((i — 1)er +e2) + Rxo(ie; +ez) | i € Z}

and let O = ||\ {0} = {y1e1 +y2e2 € Ng | 32 > 0}. Then I'(£) acts on the open set U : = Int(ord~1(0))
of Y properly discontinuously. If X is a primitive k-th root of the unity, then U(t) : = U/I'(t) is an elliptic
surface over an open disk with only one singular fiber of type kl,,, because eke ig I'(t)-invariant and
gives a fibration on U(t).

Lemma 32. If|\| = 1 and \* # 1 for any positive integer k, then the above U (t) contains no compact
analytic curves except those contained in X (t) := (Y \ Tn)/L(t).

Proof. Suppose that U(t) contains a compact analytic curve E not contained in X(t). Let E’
be a connected component of [U — U(t)]"*(E). Then |e®| is constant on E’, because it is a T'(t)-

. . . . . . * . * .
invariant plurisubharmonic function on U. Hence so is e®2. Since e®2 does not vanish on Tx and

t(y1)(e3) = (t(1)(e3)) (nt(1 ™ )(e3) = My~ )(e371) = (17 ")(e) = -+ = A¥ # 1 for any positive
integer k, {y € T'(t) | yE' = E'} = {1}. It contradicts the assumption that E is compact. O

Assume that [A| < 1. Let
Y= {{0}, Rzo(iel + 62), Rzo((i - 1)61 + 62) + Rzo(’iel + ez),Rzoel | xS Z}
Then the closure of

{yie1 +y2es € Nr | —a1y2 <y1 <0} U{y1e1 +y2e2 € Nr | 0 <41,0 <yo <b}
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in Mc(N,X) is a fundamental domain of the action of I'(£) on Mc(N,X), because (1) = bes, where
b= —log|\|. Hence I'(£) acts on Mc(N, X) properly discontinuously. Y/T(t) is a parabolic Inoue surface
(see [4, 4.3.(2)(b)]). Next, we consider the case that r > 3.

Proposition 33. Let I' be as above. For any element v in Z1(I', Nr), there exists a real number s
such that I'(v) acts on C' : = {y1e1 + yae2 + - - + yre, € Nr | y» > 5o} properly discontinuously.

Proof. For any real number s, v(v;) o y; sends se, to se,. + a;se; + v(;). We can express v(y;) =
Z;;i ciker- Let d(s) be the determinant of the (r — 1) x (r — 1) matrix whose (4, ) entry is ¢;; (resp.
a;s + ¢;;) for i # j (vesp. i = j). If d(s) # 0, then I'(v) acts properly discontinuously on the hyperplane
in Ng defined by 3. = s. On the other hand, d(s) is a polynomial of s whose coefficient of s"~! is
ayag - - ar—1 > 0. Hence there exists a real number sg such that d(s) > 0 for s > sq. O

Let ¥ = {faces of yo(i) | v € I',i € I}, where
o(i1, iz, ... ir—1) = R>oer + Rxo(e, +e;,) + -+ Rxole, +e;, +--+e;,_,),

I is the set of permutations of {1,2,...,r—1} and I" is the group I for the case a; =as =---=a,_1 = 1.
Then ¥ is a I-invariant fan and |X| = {y1€1 + yoe2 + -+ + yre, € Nr | y» > 0} U{0}. Let ¢ be
any element in Z'(I',Ty). Then I'(t) acts on U := Int(ord"*(C)) properly discontinuously, where
C is as in the above proposition for v = ¢. Since eiv, = ef +are; and ejy; = e if j # k,

(it () 7Y (ef) = tys)(ehy) (H()(e;) ™" = t(y;)(ase}) or 1, accordingly as i = k or i # k.
Hence t(v;)(a;er) = 1 for i # j, because v;t(v;)t(v;) "t = v;t(7i)t(7:) " . Therefore, there exists a posi-
tive integer ag such that e®®r is I'(t)-invariant, i.e., U/T'(t) is a degenerating family of complex tori.
21 (me2 +ex + (—2)er + (=2)71e3 =0)
J1€2 = 661 + 362 — 263

’}/382 = 261 — €2 —+ 293 ”yleg = 281 + 282 — €3

Y3€e1 = 361 — 262 + 663

€3 ey
"2€1 = —€1 +M: —2e; + 6Ges + 3eg

Figure 30
Now, we consider the case that I' is a free group. Let =1, 79, ..., 71 be generators of a free group
I' C GL(N). Then for any elements ty, ts, ..., t; in Ty, there exists the element ¢ in Z1(T', Ty) with

t(y;) = t;. Let ¥ and T be a fan and a group, respectively, obtained from A in Example 7. Let v70503
and {ej,es,es} be as in Example 7. Then I is the free group generated by 7; and ~2 defined as fol-
lows: y1€1 = e1, y1e2 = 6e; + 3ex — 2e3, y1€3 = 2e; + 2ep — e3, 12€1 = —e1 + 2e3 + 2e3, 12€2 = ey,
vae3 = —2e; + 6es + 3e; (see Figure 30). Let U, X and Z be as in Example 7. Let ¢ be an ele-
ment in Z1(T, Ty) with t(y1), t(72) € CTn. Let {e}, e}, e5} be the basis of M dual to {e;, ez, e3}, let
r; =e] +e5+e;—e and let y3 = 71_172_1. Then (z;,e;) = 0 and z;y; = x; for 1 < i < 3. Hence we
see by Proposition 13 and Lemma 32 that X; : = (orb(Rx>¢e;) N U)/(t(y:) o) contains compact analytic
curves not notained in E; := (orb(Rx>¢e;) \ orb(R>oe;))/(t(vi) © v4), if and only if ¢(v;)(x;) is a root of
the unity. On the other hand, the compact curve F; is not contractible in X, because it is a cycle of two
rational curves with the self-intersection number —2. Therefore, X () : = (X NU)/T'(¢) is contractible in
U(t) : = U/T(t) only if all £(y;)(x;) are roots of the unity. Conversely, if ¢(y1)¥ = t(72)* = 1 for a positive
integer k, then X (t) NV is contractible in a neighborhood V of Z(t) : = Z/I'(t), by Proposition 30. Let
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k, 1, m be positive integers and let ¢ be the element in Z'(I', ) defined as follows: ¢(y1)(e}) = €

1 -1
[

t(y1)(e}) = ek, t(y2)(e}) = €, t(y1)(e}) = t(y2)(ef) = t(v2)(es) = 1, where €, = exp(2mv/—1/k). Then
t(y1)(x1) = ex, t(y2)(x2) = € and t(y3)(x3) = €n. Hence X;, Xo and X3 are elliptic surfaces with

multiple fibers of type kls, [l and mls, respectively.

2L om0l »
-3 -3 Y A 7
< > 2 -1 -1 -
3 3 \ / \ /
-1 22 2
2 2
Figure 31
Three A in Figure 31 give other examples with free groups I'.
w1 V2 w1 V2
W3 Uy Wa U,
Wy 1 Wy 1
U1 wo Vo ws
Qs Wy U3 b1 ag w3 Vg B2
v vy Wy w3 vy vl Wy
3 o ws V2 B2 o wy U3 B3 Wy
V2 w1 U3 w2
wy 4 w1 4
Wy V3 w3 V2
w2 U1 Figure 32 w2 U1

Finally, we give an example such that I" is not free nor abelian. Let 7 = 4 and let A3 = {a, 3}, where
a = Tyugv30z and [ = wywswzws. Let a; and B; be the 2-dimensional faces of @ and S which do not

contain v; and w;, respectively. Let B = {(ay, B5—:), (Bi,as5—i) | 1 < i <4} Let l(q, g,_,)(v5) = wy

j—1i

and let l(g, o;_,)(w;) = vjj_q), where [k] =k (vesp. k +5), if K > 0 (resp. k < 0). Then (A, B,{ly}veB)
is a simplicial system and the induced topological space A has only one vertex whose compliment is a
topological manifold, and two 1-dimensional slices at each of which six 3-dimensional slices meet (see
Figure 32). Let ¢ be the Z-weight on A whose values are all equal to —1. Then the condition (M-
i) is satisfied around the two 1-dimensional slices of A. Moreover, the conditions in Theorem 12 and
Proposition 21 are satisfied. Choose « as ag in the definition of Path(A) in Section 2. Let h(u;) = e; for
1 < i <4 in the definition of the map h CAY N, where u; are the vertices of a simplex wiuzuzus of A

with f(u;) = vi. Let 75 = p([(a1, B4), (Bj5—i), u)]) for i = 2,3,4. Then

1 -1 .0 0 0 -1 -1 0 00 -1 —1
1 2 10 0 1 2 1 00 1 0
=1 2 01 BT lo 1 0 o™ 10 1 2 |’
1 0 00 1 1 2 0 01 1 2
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' = (72,73,74) and the relations 747:;17472 =1, 737517475173 =1 hold, because
((alv ﬂ4)7 (ﬂla a4)7 (0437 BQ)’ (ﬁla a4)7 (ala ﬂ4)a (ﬂ3a a2)) ~ ()’
((a1, Ba), (B2, a3), (a2, B3), (B1, cu), (a2, B3), (B2, 3)) ~ ()

(see Figure 32). In the following calculation, we use C*/Z* instead of Tl for simplicity. Let v be an
element in Z!(I", C*/Z*). Then we obtain the relations: 7475 'v4v(y2) — Va3 "0 (3) + (La+74v3 v(v4) =
0 and —y375 " (Is 4+ v4v5 Dv(v2) + (Is + 7375 “Yavs Dv(y3) + 7375 *v(74) = 0. Hence if v(y4) = 0, then

v(13) = 1av(2), (—(Ta + 7475 ") +v2vs (s + v373 vy )va)v(2) = 0.

Since
0 -2 0 -4
—1 —1 —1 0 0 2 4
—Iy —vavs  +v2v3 YAt yaYs Ve = 0 4 0 8 ;
-2 2 -2 2

v(72) is in K := (C*(1,-2,-2,1) + $Z*) /Z*, if v(v4) = 0. Hence L := {v € Z(T',C*/Z*) | v(va) =
0} ~ K. Since |y4 — I4] = 3, there exists an element v in BY(I", C*/Z*) with v(4) = vo for any element
v in C*/Z*. Hence the restriction ¢, to L of the quotient map ¢ : Z'(I',C*/Z*) — H(I',C*/Z*)
is surjective. If (Qvg)(v4) = O for an element vy in C*/Z*, then vy is in Z1%(1,1,1,1) and hence

) ) )

(0v0)(72) = (9vo)(v3) = 0. Therefore, L N BY(I', C*/Z*) = {0}, i.e., g, is injective. Thus we obtain:
Proposition 34. H'(T',Ty) ~ (C'(1,-2,-2,1) + 1Z*) /Z*.

Although A does not satisfy the condition of Theorem 24, the barycentric subdivision of A with the
Z-weight as in Figure 33 does and gives the I'-equivariant blowing up of Y along all orbits whose closures
are compact. Hence the conclusion of Theorem 24 holds.

72 s s

V; + 05 + Vg + Uy v; + V5 + Vg + Uy

{i,7,k,1} ={1,2,3,4} 0|0

A1 s

Vi

0
0

v; + 5 0 -Du; + v

{0,
v; + v + vk v; +vj + Vg

Figure 33 Figure 34
The subgroup of T fixing *(1,0,0,0) is a free abelian group generated by v;'y2v3 and 5 'y3v; 73
(see Figure 34). Let ¢ be a complex number and let v be the element in Z!(I',C*/Z*) detemined
by v(y2) = ct(1,-2,-2,1), v(y3) = 1v(y2) and v(ys) = 0. Then v(y; 'y2y3) = (7,2, —4,2) and
v(v5 Y375 ty3) = ¢f(—8,4,—5,1). On the other hand, e* := (0,1,1,1) is on AC*, (e*,(1,0,0,0)) = 0.
and e*y = e* for every element 7 in I't(; 9,0,0). Let ¢ be any element in ZY(T,CTy) with t(y4) = 1. Since
(e*,1(—=17,2,—4,2)) = (e*,!(—8,4,—5,1)) = 0, we can define the sum

S ) (2e)e* 7,

[’Y]ert(l,o,o,o)\r

which converges on U(t), because |t(7y)(2e*)| = 1. Moreover, it is I'(¢)-invariant and gives a fibration on
X(t). Also > cpt(y)(z)e™ converges and is I'(¢)-invariant for any element z in Int(C*) N M. Hence the
conclusion of Theorem 24 holds also for U(t), X (¢) and Z(t).
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